zoukankan      html  css  js  c++  java
  • 100864 G

    我觉得wordpress就是傻逼,又丑又难用,也可能是我太菜了,这并不影响我现阶段觉得wordpress是傻逼。主要是插件一直下不上。。
    历史遗留问题。大概还是省赛排位的时候,当时我才刚碰计算几何。。。施展不出来。。。
    现在有教练模式准备补一补。然后看了别人的代码。。发现求了个圆切线,,然后没了。
    ???????????????????????????????????????????
    ???????????????????????????????????????
    这不是傻逼题吗为什么我当时不会?
    题目的意思应该是不存在两棵树相切的情况。所以枚举切线就行了。
    好嘛博客园md竟然不能实时预览,wtmd。。。。

    #include <bits/stdc++.h>
    #define mp make_pair
    #define fi first
    #define se second
    #define pb push_back
    using namespace std;
    typedef double db;
    const db eps=1e-6;
    const db pi=acos(-1);
    int sign(db k){
        if (k>eps) return 1; else if (k<-eps) return -1; return 0;
    }
    int cmp(db k1,db k2){return sign(k1-k2);}
    int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内
    struct point{
        db x,y;
        point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};}
        point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};}
        point operator * (db k1) const{return (point){x*k1,y*k1};}
        point operator / (db k1) const{return (point){x/k1,y/k1};}
        int operator == (const point &k1) const{return cmp(x,k1.x)==0&&cmp(y,k1.y)==0;}
        // 逆时针旋转
        point turn(db k1){return (point){x*cos(k1)-y*sin(k1),x*sin(k1)+y*cos(k1)};}
        point turn90(){return (point){-y,x};}
        bool operator < (const point k1) const{
            int a=cmp(x,k1.x);
            if (a==-1) return 1; else if (a==1) return 0; else return cmp(y,k1.y)==-1;
        }
        db abs(){return sqrt(x*x+y*y);}
        db abs2(){return x*x+y*y;}
        db dis(point k1){return ((*this)-k1).abs();}
        point unit(){db w=abs(); return (point){x/w,y/w};}
        void scan(){double k1,k2; scanf("%lf%lf",&k1,&k2); x=k1; y=k2;}
        void print(){printf("%.11lf %.11lf
    ",x,y);}
        db getw(){return atan2(y,x);}
        point getdel(){if (sign(x)==-1||(sign(x)==0&&sign(y)==-1)) return (*this)*(-1); else return (*this);}
        int getP() const{return sign(y)==1||(sign(y)==0&&sign(x)==-1);}
    };
    int inmid(point k1,point k2,point k3){return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y);}
    db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;}
    db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;}
    db rad(point k1,point k2){return atan2(cross(k1,k2),dot(k1,k2));}
    // -pi -> pi
    int compareangle (point k1,point k2){//极角排序+
        return k1.getP()<k2.getP()||(k1.getP()==k2.getP()&&sign(cross(k1,k2))>0);
    }
    point proj(point k1,point k2,point q){ // q 到直线 k1,k2 的投影
        point k=k2-k1; return k1+k*(dot(q-k1,k)/k.abs2());
    }
    point reflect(point k1,point k2,point q){return proj(k1,k2,q)*2-q;}
    int clockwise(point k1,point k2,point k3){// k1 k2 k3 逆时针 1 顺时针 -1 否则 0
        return sign(cross(k2-k1,k3-k1));
    }
    int checkLL(point k1,point k2,point k3,point k4){// 求直线 (L) 线段 (S)k1,k2 和 k3,k4 的交点
        return cmp(cross(k3-k1,k4-k1),cross(k3-k2,k4-k2))!=0;
    }
    point getLL(point k1,point k2,point k3,point k4){
        db w1=cross(k1-k3,k4-k3),w2=cross(k4-k3,k2-k3); return (k1*w2+k2*w1)/(w1+w2);
    }
    int intersect(db l1,db r1,db l2,db r2){
        if (l1>r1) swap(l1,r1); if (l2>r2) swap(l2,r2); return cmp(r1,l2)!=-1&&cmp(r2,l1)!=-1;
    }
    int checkSS(point k1,point k2,point k3,point k4){
        return intersect(k1.x,k2.x,k3.x,k4.x)&&intersect(k1.y,k2.y,k3.y,k4.y)&&
               sign(cross(k3-k1,k4-k1))*sign(cross(k3-k2,k4-k2))<=0&&
               sign(cross(k1-k3,k2-k3))*sign(cross(k1-k4,k2-k4))<=0;
    }
    db disSP(point k1,point k2,point q){
        point k3=proj(k1,k2,q);
        if (inmid(k1,k2,k3)) return q.dis(k3); else return min(q.dis(k1),q.dis(k2));
    }
    db disSS(point k1,point k2,point k3,point k4){
        if (checkSS(k1,k2,k3,k4)) return 0;
        else return min(min(disSP(k1,k2,k3),disSP(k1,k2,k4)),min(disSP(k3,k4,k1),disSP(k3,k4,k2)));
    }
    int onS(point k1,point k2,point q){return inmid(k1,k2,q)&&sign(cross(k1-q,k2-k1))==0;}
    struct circle{
        point o; db r;
        void scan(){o.scan(); scanf("%lf",&r);}
        int inside(point k){return cmp(r,o.dis(k));}
    };
    struct line{
        // p[0]->p[1]
        point p[2];
        line(point k1,point k2){p[0]=k1; p[1]=k2;}
        point& operator [] (int k){return p[k];}
        int include(point k){return sign(cross(p[1]-p[0],k-p[0]))>0;}
        point dir(){return p[1]-p[0];}
        line push(){ // 向外 ( 左手边 ) 平移 eps
            const db eps = 1e-6;
            point delta=(p[1]-p[0]).turn90().unit()*eps;
            return {p[0]-delta,p[1]-delta};
        }
    };
    point getLL(line k1,line k2){return getLL(k1[0],k1[1],k2[0],k2[1]);}
    int parallel(line k1,line k2){return sign(cross(k1.dir(),k2.dir()))==0;}
    int sameDir(line k1,line k2){return parallel(k1,k2)&&sign(dot(k1.dir(),k2.dir()))==1;}
    int operator < (line k1,line k2){
        if (sameDir(k1,k2)) return k2.include(k1[0]);
        return compareangle(k1.dir(),k2.dir());
    }
    int checkpos(line k1,line k2,line k3){return k3.include(getLL(k1,k2));}
    vector<line> getHL(vector<line> &L){ // 求半平面交 , 半平面是逆时针方向 , 输出按照逆时针
        sort(L.begin(),L.end()); deque<line> q;
        for (int i=0;i<(int)L.size();i++){
            if (i&&sameDir(L[i],L[i-1])) continue;
            while (q.size()>1&&!checkpos(q[q.size()-2],q[q.size()-1],L[i])) q.pop_back();
            while (q.size()>1&&!checkpos(q[1],q[0],L[i])) q.pop_front();
            q.push_back(L[i]);
        }
        while (q.size()>2&&!checkpos(q[q.size()-2],q[q.size()-1],q[0])) q.pop_back();
        while (q.size()>2&&!checkpos(q[1],q[0],q[q.size()-1])) q.pop_front();
        vector<line>ans; for (int i=0;i<q.size();i++) ans.push_back(q[i]);
        return ans;
    }
    db closepoint(vector<point>&A,int l,int r){ // 最近点对 , 先要按照 x 坐标排序
        if (r-l<=5){
            db ans=1e20;
            for (int i=l;i<=r;i++) for (int j=i+1;j<=r;j++) ans=min(ans,A[i].dis(A[j]));
            return ans;
        }
        int mid=l+r>>1; db ans=min(closepoint(A,l,mid),closepoint(A,mid+1,r));
        vector<point>B; for (int i=l;i<=r;i++) if (abs(A[i].x-A[mid].x)<=ans) B.push_back(A[i]);
        sort(B.begin(),B.end(),[](point k1,point k2){return k1.y<k2.y;});
        for (int i=0;i<B.size();i++) for (int j=i+1;j<B.size()&&B[j].y-B[i].y<ans;j++) ans=min(ans,B[i].dis(B[j]));
        return ans;
    }
    int checkposCC(circle k1,circle k2){// 返回两个圆的公切线数量
        if (cmp(k1.r,k2.r)==-1) swap(k1,k2);
        db dis=k1.o.dis(k2.o);  int w1=cmp(dis,k1.r+k2.r),w2=cmp(dis,k1.r-k2.r);
        if (w1>0) return 4; else if (w1==0) return 3; else if (w2>0) return 2;
        else if (w2==0) return 1; else return 0;
    }
    vector<point> getCL(circle k1,point k2,point k3){ // 沿着 k2->k3 方向给出 , 相切给出两个
        point k=proj(k2,k3,k1.o); db d=k1.r*k1.r-(k-k1.o).abs2();
        if (sign(d)==-1) return {};
        point del=(k3-k2).unit()*sqrt(max((db)0.0,d)); return {k-del,k+del};
    }
    vector<point> getCC(circle k1,circle k2){// 沿圆 k1 逆时针给出 , 相切给出两个
        int pd=checkposCC(k1,k2); if (pd==0||pd==4) return {};
        db a=(k2.o-k1.o).abs2(),cosA=(k1.r*k1.r+a-k2.r*k2.r)/(2*k1.r*sqrt(max(a,(db)0.0)));
        db b=k1.r*cosA,c=sqrt(max((db)0.0,k1.r*k1.r-b*b));
        point k=(k2.o-k1.o).unit(),m=k1.o+k*b,del=k.turn90()*c;
        return {m-del,m+del};
    }
    vector<point> TangentCP(circle k1,point k2){// 沿圆 k1 逆时针给出
        db a=(k2-k1.o).abs(),b=k1.r*k1.r/a,c=sqrt(max((db)0.0,k1.r*k1.r-b*b));
        point k=(k2-k1.o).unit(),m=k1.o+k*b,del=k.turn90()*c;
        return {m-del,m+del};
    }
    vector<line> TangentoutCC(circle k1,circle k2){
        int pd=checkposCC(k1,k2); if (pd==0) return {};
        if (pd==1){point k=getCC(k1,k2)[0]; return {(line){k,k}};}
        if (cmp(k1.r,k2.r)==0){
            point del=(k2.o-k1.o).unit().turn90().getdel();
            return {(line){k1.o-del*k1.r,k2.o-del*k2.r},(line){k1.o+del*k1.r,k2.o+del*k2.r}};
        } else {
            point p=(k2.o*k1.r-k1.o*k2.r)/(k1.r-k2.r);
            vector<point>A=TangentCP(k1,p),B=TangentCP(k2,p);
            vector<line>ans; for (int i=0;i<A.size();i++) ans.push_back((line){A[i],B[i]});
            return ans;
        }
    }
    vector<line> TangentinCC(circle k1,circle k2){
        int pd=checkposCC(k1,k2); if (pd<=2) return {};
        if (pd==3){point k=getCC(k1,k2)[0]; return {(line){k,k}};}
        point p=(k2.o*k1.r+k1.o*k2.r)/(k1.r+k2.r);
        vector<point>A=TangentCP(k1,p),B=TangentCP(k2,p);
        vector<line>ans; for (int i=0;i<A.size();i++) ans.push_back((line){A[i],B[i]});
        return ans;
    }
    vector<line> TangentCC(circle k1,circle k2){
        int flag=0; if (k1.r<k2.r) swap(k1,k2),flag=1;
        vector<line>A=TangentoutCC(k1,k2),B=TangentinCC(k1,k2);
        for (line k:B) A.push_back(k);
        if (flag) for (line &k:A) swap(k[0],k[1]);
        return A;
    }
    db getarea(circle k1,point k2,point k3){
        // 圆 k1 与三角形 k2 k3 k1.o 的有向面积交
        point k=k1.o; k1.o=k1.o-k; k2=k2-k; k3=k3-k;
        int pd1=k1.inside(k2),pd2=k1.inside(k3);
        vector<point>A=getCL(k1,k2,k3);
        if (pd1>=0){
            if (pd2>=0) return cross(k2,k3)/2;
            return k1.r*k1.r*rad(A[1],k3)/2+cross(k2,A[1])/2;
        } else if (pd2>=0){
            return k1.r*k1.r*rad(k2,A[0])/2+cross(A[0],k3)/2;
        }else{
            int pd=cmp(k1.r,disSP(k2,k3,k1.o));
            if (pd<=0) return k1.r*k1.r*rad(k2,k3)/2;
            return cross(A[0],A[1])/2+k1.r*k1.r*(rad(k2,A[0])+rad(A[1],k3))/2;
        }
    }
    circle getcircle(point k1,point k2,point k3){
        db a1=k2.x-k1.x,b1=k2.y-k1.y,c1=(a1*a1+b1*b1)/2;
        db a2=k3.x-k1.x,b2=k3.y-k1.y,c2=(a2*a2+b2*b2)/2;
        db d=a1*b2-a2*b1;
        point o=(point){k1.x+(c1*b2-c2*b1)/d,k1.y+(a1*c2-a2*c1)/d};
        return (circle){o,k1.dis(o)};
    }
    circle c[520];
    vector<line> v,g;
    vector<point> p ;
    int n;
    bool check(point x,point y){
        for(int i=1;i<=n-2;i++)if(cmp(c[i].r,disSP(x,y,c[i].o))>0)return false;
        return true;
    }
    bool can(line a){
        p = getCL(c[n-1],a[0],a[1]);
        if(p.empty())return false;
        point x = p[0];
        p = getCL(c[n],a[0],a[1]);
        if(p.empty())return false;
        point y = p[0];
        return check(x,y);
    }
    int main(){
        freopen("garden.in", "r", stdin);
        freopen("garden.out", "w", stdout);
        scanf("%d",&n);
        n+=2;
        for(int i=1;i<=n;i++){
            scanf("%lf%lf%lf",&c[i].o.x,&c[i].o.y,&c[i].r);
        }
        for(int i=1;i<n;i++){
            for(int j=i+1;j<=n;j++){
                g=TangentCC(c[i],c[j]);
                for(auto x:g)v.push_back(x);
            }
        }
        bool f=0;
        for(auto x:v){
            if(can(x)){
                f=1;
                break;
            }
        }
        if(f)printf("YES
    ");
        else printf("NO
    ");
    }
    
  • 相关阅读:
    钉钉扫码登录前端页面实现
    本地开发的jar包放到本地maven仓库
    mybatise 设置全局变量实例
    版本控制器:Git
    PIP安装源
    Django跨域问题
    vue项目开发安装流程
    浅谈CSRF(Cross-site request forgery)跨站请求伪造(写的非常好)
    explicit抑制隐型转换
    拷贝构造函数
  • 原文地址:https://www.cnblogs.com/MXang/p/11280020.html
Copyright © 2011-2022 走看看