zoukankan      html  css  js  c++  java
  • hdu 5243

    https://www.cnblogs.com/tellmewtf/p/4574438.html
    这份代码不能AC,避雷,不过思路是对的,自己写就行了,还是很好写的。

    样例二很容易画出来,然后思路就比较好想了。
    唔,半平面交的tag也是很显然的东西。
    现在考虑怎么做,其实一条直线只要在它一侧的点的个数满足限制,那么这个半平面就是部分合法的,我们就是要对所有合法半平面求交。

    然后很容易想到扫描线的做法,那么这个题就做完了。

    关于限制,在我代码的第145行,<=和==都能过。
    这一点我也不太明白,理论上,哦草竟然没有三点共线,都过了才发现。。。
    这样的话等于的时候其实就是小于等于,所以没什么影响。

    其实扫描线是根本不怕三点共线这种东西的,,那这个题就挺简单的了,应该很难写错吧。

    注意输出的时候用 .6f ,我也不懂为什么,反正我 .11f 就wa,好坑啊,,,先是被错误的题解坑了,又被输出坑。。。

    #include <bits/stdc++.h>
    using namespace std;
    typedef double db;
    const db eps=1e-6;
    const db pi=acos(-1);
    int sign(db k){
        if (k>eps) return 1; else if (k<-eps) return -1; return 0;
    }
    int cmp(db k1,db k2){return sign(k1-k2);}
    int inmid(db k1,db k2,db k3){return sign(k1-k3)*sign(k2-k3)<=0;}// k3 在 [k1,k2] 内
    struct point{
        db x,y;
        point operator + (const point &k1) const{return (point){k1.x+x,k1.y+y};}
        point operator - (const point &k1) const{return (point){x-k1.x,y-k1.y};}
        point operator * (db k1) const{return (point){x*k1,y*k1};}
        point operator / (db k1) const{return (point){x/k1,y/k1};}
        int operator == (const point &k1) const{return cmp(x,k1.x)==0&&cmp(y,k1.y)==0;}
        // 逆时针旋转
        point turn(db k1){return (point){x*cos(k1)-y*sin(k1),x*sin(k1)+y*cos(k1)};}
        point turn90(){return (point){-y,x};}
        bool operator < (const point k1) const{
            int a=cmp(x,k1.x);
            if (a==-1) return 1; else if (a==1) return 0; else return cmp(y,k1.y)==-1;
        }
        db abs(){return sqrt(x*x+y*y);}
        db abs2(){return x*x+y*y;}
        db dis(point k1){return ((*this)-k1).abs();}
        point unit(){db w=abs(); return (point){x/w,y/w};}
        void scan(){double k1,k2; scanf("%lf%lf",&k1,&k2); x=k1; y=k2;}
        void print(){printf("%.11lf %.11lf
    ",x,y);}
        db getw(){return atan2(y,x);}
        point getdel(){if (sign(x)==-1||(sign(x)==0&&sign(y)==-1)) return (*this)*(-1); else return (*this);}
        int getP() const{return sign(y)==1||(sign(y)==0&&sign(x)==-1);}
    };
    int inmid(point k1,point k2,point k3){return inmid(k1.x,k2.x,k3.x)&&inmid(k1.y,k2.y,k3.y);}
    db cross(point k1,point k2){return k1.x*k2.y-k1.y*k2.x;}
    db dot(point k1,point k2){return k1.x*k2.x+k1.y*k2.y;}
    db rad(point k1,point k2){return atan2(cross(k1,k2),dot(k1,k2));}
    // -pi -> pi
    int compareangle (point k1,point k2){//极角排序+
        return k1.getP()<k2.getP()||(k1.getP()==k2.getP()&&sign(cross(k1,k2))>0);
    }
    point proj(point k1,point k2,point q){ // q 到直线 k1,k2 的投影
        point k=k2-k1;return k1+k*(dot(q-k1,k)/k.abs2());
    }
    point reflect(point k1,point k2,point q){return proj(k1,k2,q)*2-q;}
    int clockwise(point k1,point k2,point k3){// k1 k2 k3 逆时针 1 顺时针 -1 否则 0
        return sign(cross(k2-k1,k3-k1));
    }
    int checkLL(point k1,point k2,point k3,point k4){// 求直线 (L) 线段 (S)k1,k2 和 k3,k4 的交点
        return cmp(cross(k3-k1,k4-k1),cross(k3-k2,k4-k2))!=0;
    }
    point getLL(point k1,point k2,point k3,point k4){
        db w1=cross(k1-k3,k4-k3),w2=cross(k4-k3,k2-k3); return (k1*w2+k2*w1)/(w1+w2);
    }
    int intersect(db l1,db r1,db l2,db r2){
        if (l1>r1) swap(l1,r1); if (l2>r2) swap(l2,r2); return cmp(r1,l2)!=-1&&cmp(r2,l1)!=-1;
    }
    int checkSS(point k1,point k2,point k3,point k4){
        return intersect(k1.x,k2.x,k3.x,k4.x)&&intersect(k1.y,k2.y,k3.y,k4.y)&&
               sign(cross(k3-k1,k4-k1))*sign(cross(k3-k2,k4-k2))<=0&&
               sign(cross(k1-k3,k2-k3))*sign(cross(k1-k4,k2-k4))<=0;
    }
    db disSP(point k1,point k2,point q){
        point k3=proj(k1,k2,q);
        if (inmid(k1,k2,k3)) return q.dis(k3); else return min(q.dis(k1),q.dis(k2));
    }
    db disSS(point k1,point k2,point k3,point k4){
        if (checkSS(k1,k2,k3,k4)) return 0;
        else return min(min(disSP(k1,k2,k3),disSP(k1,k2,k4)),min(disSP(k3,k4,k1),disSP(k3,k4,k2)));
    }
    int onS(point k1,point k2,point q){return inmid(k1,k2,q)&&sign(cross(k1-q,k2-k1))==0;}
    struct circle{
        point o; db r;
        void scan(){o.scan(); scanf("%lf",&r);}
        int inside(point k){return cmp(r,o.dis(k));}
    };
    struct line{
        // p[0]->p[1]
        point p[2];
        line(){}
        line(point k1,point k2){p[0]=k1; p[1]=k2;}
        point& operator [] (int k){return p[k];}
        int include(point k){return sign(cross(p[1]-p[0],k-p[0]))>0;}
        point dir(){return p[1]-p[0];}
        line push(){ // 向外 ( 左手边 ) 平移 eps
            const db eps = 1e-6;
            point delta=(p[1]-p[0]).turn90().unit()*eps;
            return {p[0]-delta,p[1]-delta};
        }
    };
    point getLL(line k1,line k2){return getLL(k1[0],k1[1],k2[0],k2[1]);}
    int parallel(line k1,line k2){return sign(cross(k1.dir(),k2.dir()))==0;}
    int sameDir(line k1,line k2){return parallel(k1,k2)&&sign(dot(k1.dir(),k2.dir()))==1;}
    int operator < (line k1,line k2){
        if (sameDir(k1,k2)) return k2.include(k1[0]);
        return compareangle(k1.dir(),k2.dir());
    }
    int checkpos(line k1,line k2,line k3){return k3.include(getLL(k1,k2));}
    vector<line> getHL(vector<line> &L){ // 求半平面交 , 半平面是逆时针方向 , 输出按照逆时针
        sort(L.begin(),L.end()); deque<line> q;
    //    for(auto x:L){
    //        x[0].print();
    //        x[1].print();
    //        printf("
    ");
    //    }
        for (int i=0;i<(int)L.size();i++){
            if (i&&sameDir(L[i],L[i-1])) continue;
            while (q.size()>1&&!checkpos(q[q.size()-2],q[q.size()-1],L[i])) q.pop_back();
            while (q.size()>1&&!checkpos(q[1],q[0],L[i])) q.pop_front();
            q.push_back(L[i]);
        }
        while (q.size()>2&&!checkpos(q[q.size()-2],q[q.size()-1],q[0])) q.pop_back();
        while (q.size()>2&&!checkpos(q[1],q[0],q[q.size()-1])) q.pop_front();
        vector<line>ans; for (int i=0;i<q.size();i++) ans.push_back(q[i]);
        return ans;
    }
    int checkLL(line k1,line k2){
        return checkLL(k1.p[0],k1.p[1],k2.p[0],k2.p[1]);
    }
    db area(vector<point> A){ // 多边形用 vector<point> 表示 , 逆时针
        db ans=0;
        for (int i=0;i<A.size();i++)
            ans+=cross(A[i],A[(i+1)%A.size()]);
        return ans/2;
    }
    
    int T,n;
    point p[1005];
    vector<line> hp;
    vector<point> v;
    void slove(int id){
        int bound = n/3-1;
        v.clear();
        for(int i=1;i<=n;i++)if(i!=id)v.push_back(p[i]-p[id]);
        sort(v.begin(),v.end(),compareangle);
        int m = v.size();
        for(int i=0;i<m;i++)v.push_back(v[i]);
        int t=0;
        for(int l=0,r;l<m;l=r+1){
            r=l;
            point _180 = {-v[l].x,-v[l].y};
            t=max(l,t);
            while (t<l+m-1&&(sign(cross(v[t+1],_180)>=0&&cross(v[t+1],v[l])<=0))) t++;
            if(m-(t-l+1)==bound){
                hp.push_back(line(p[id],p[id]+v[l]));
    //            printf("%.11f %.11f %.11f %.11f
    ",p[id].x,p[id].y,p[id].x+v[l].x,p[id].y+v[l].y);
            }
            while (sign(cross(v[l],v[r+1]))==0&&sign(dot(v[l],v[r+1]))==0)r++;
        }
    }
    
    int main(){
        scanf("%d",&T);int cas = 0;
        while (T--){
            hp.clear();
            v.clear();
            cas++;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
            for(int i=1;i<=n;i++){
                slove(i);
            }
            hp = getHL(hp);
            if(hp.size()<3){printf("Case #%d: 0
    ",cas);continue;}
            int m=hp.size();
            v.clear();
            for(int i=0;i<m;i++){
                v.push_back(getLL(hp[i],hp[(i+1)%m]));
            }
            db s = area(v);
            printf("Case #%d: %.6f
    ",cas,s);
        }
    }
    
    
  • 相关阅读:
    浅谈prufer编码
    数据结构训练之三
    博弈论训练之一
    动态规划训练之十三
    杂题训练之七
    奇技淫巧训练之八
    浅谈博弈论
    浅谈卡特兰数
    奇技淫巧训练之七
    浅谈概率期望的一些例题
  • 原文地址:https://www.cnblogs.com/MXang/p/11600458.html
Copyright © 2011-2022 走看看