zoukankan      html  css  js  c++  java
  • tf.nn.conv2d 参数介绍

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)

    除去name参数用以指定该操作的name,与方法有关的一共五个参数

    第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一

    第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维

    第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4

    第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式(后面会介绍)

    第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true

    结果返回一个Tensor,这个输出,就是我们常说的feature map,shape仍然是[batch, height, width, channels]这种形式。

    那么TensorFlow的卷积具体是怎样实现的呢,用一些例子去解释它:

    1.考虑一种最简单的情况,现在有一张3×3单通道的图像(对应的shape:[1,3,3,1]),用一个1×1的卷积核(对应的shape:[1,1,1,1])去做卷积,最后会得到一张3×3的feature map

    2.增加图片的通道数,使用一张3×3五通道的图像(对应的shape:[1,3,3,5]),用一个1×1的卷积核(对应的shape:[1,1,1,1])去做卷积,仍然是一张3×3的feature map,这就相当于每一个像素点,卷积核都与该像素点的每一个通道做卷积。

    input = tf.Variable(tf.random_normal([1,3,3,5]))
    filter = tf.Variable(tf.random_normal([1,1,5,1]))
    
    op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')

    3.把卷积核扩大,现在用3×3的卷积核做卷积,最后的输出是一个值,相当于情况2的feature map所有像素点的值求和

    input = tf.Variable(tf.random_normal([1,3,3,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,1]))
    
    op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')

    4.使用更大的图片将情况2的图片扩大到5×5,仍然是3×3的卷积核,令步长为1,输出3×3的feature map

    input = tf.Variable(tf.random_normal([1,5,5,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,1]))
    
    op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')

    注意我们可以把这种情况看成情况2和情况3的中间状态,卷积核以步长1滑动遍历全图,以下x表示的位置,表示卷积核停留的位置,每停留一个,输出feature map的一个像素

     .....

    .xxx.
    .xxx.
    .xxx.
    .....

    5.上面我们一直令参数padding的值为‘VALID’,当其为‘SAME’时,表示卷积核可以停留在图像边缘,如下,输出5×5的feature map

    input = tf.Variable(tf.random_normal([1,5,5,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,1]))
    
    op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
    xxxxx
    xxxxx
    xxxxx
    xxxxx
    xxxxx

    6.如果卷积核有多个

    input = tf.Variable(tf.random_normal([1,5,5,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,7]))
    
    op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')

    此时输出7张5×5的feature map

    7.步长不为1的情况,文档里说了对于图片,因为只有两维,通常strides取[1,stride,stride,1]

    input = tf.Variable(tf.random_normal([1,5,5,5]))
    
    filter = tf.Variable(tf.random_normal([3,3,5,7]))
    
    op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')

    此时,输出7张3×3的feature map

       x.x.x

    .....
    x.x.x
    .....
    x.x.x

    8.如果batch值不为1,同时输入10张图

    input = tf.Variable(tf.random_normal([10,5,5,5]))
    filter = tf.Variable(tf.random_normal([3,3,5,7]))
    
    op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')

    每张图,都有7张3×3的feature map,输出的shape就是[10,3,3,7]

  • 相关阅读:
    基础总结深入:数据类型的分类和判断(数据、内存、变量) 对象 函数 回调函数 IIFE 函数中的this 分号
    BOM 定时器 通过修改元素的类来改变css JSON
    事件 事件的冒泡 事件的委派 事件的绑定 事件的传播
    DOM修改 使用DOM操作CSS
    包装类 Date Math 字符串的相关的方法 正则表达式 DOM DOM查询
    数组 call()、apply()、bind()的使用 this arguments
    autocad 二次开发 最小包围圆算法
    win10 objectarx向导在 vs2015中不起作用的解决办法
    AutoCad 二次开发 jig操作之标注跟随线移动
    AutoCad 二次开发 文字镜像
  • 原文地址:https://www.cnblogs.com/MY0213/p/9367558.html
Copyright © 2011-2022 走看看