zoukankan      html  css  js  c++  java
  • LSTM介绍

    转自:https://blog.csdn.net/gzj_1101/article/details/79376798

    LSTM网络

    long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层。

    LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

    不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

    在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise 的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

    LSTM核心思想

    LSTM的关键在于细胞的状态整个(绿色的图表示的是一个cell),和穿过细胞的那条水平线。

    细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

    若只有上面的那条水平线是没办法实现添加或者删除信息的。而是通过一种叫做 门(gates) 的结构来实现的。

    门 可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

    sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0 表示“不让任何信息通过”, 1 表示“让所有信息通过”。

    LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

    逐步理解LSTM

    现在我们就开始通过三个门逐步的了解LSTM的原理

    遗忘门

    在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取ht1ht−1 和xtxt ,输出一个在 0到 1之间的数值给每个在细胞状态 Ct1Ct−1 中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

    让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

    其中ht1ht−1 表示的是上一个cell的输出,xtxt 表示的是当前细胞的输入。σσ 表示sigmod函数。

    输入门

    下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个 步骤:首先,一个叫做“input gate layer ”的 sigmoid 层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容,C^tC^t 。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

    现在是更新旧细胞状态的时间了,Ct1Ct−1 更新为CtCt 。前面的步骤已经决定了将会做什么,我们现在就是实际去完成。

    我们把旧状态与ftft 相乘,丢弃掉我们确定需要丢弃的信息。接着加上itC~tit∗C~t 。这就是新的候选值,根据我们决定更新每个状态的程度进行变化。

    在语言模型的例子中,这就是我们实际根据前面确定的目标,丢弃旧代词的性别信息并添加新的信息的地方。

    输出门

    最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid 层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid 门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

    在语言模型的例子中,因为他就看到了一个 代词,可能需要输出与一个 动词 相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

    LSTM变体

    原文这部分介绍了 LSTM 的几个变种,还有这些变形的作用。在这里我就不再写了。有兴趣的可以直接阅读原文。

    下面主要讲一下其中比较著名的变种 GRU(Gated Recurrent Unit ),这是由 Cho, et al. (2014) 提出。在 GRU 中,如下图所示,只有两个门:重置门(reset gate)和更新门(update gate)。同时在这个结构中,把细胞状态和隐藏状态进行了合并。最后模型比标准的 LSTM 结构要简单,而且这个结构后来也非常流行。

    其中, rtrt 表示重置门,ztzt 表示更新门。重置门决定是否将之前的状态忘记。(作用相当于合并了 LSTM 中的遗忘门和传入门)当rtrt 趋于0的时候,前一个时刻的状态信息ht1ht−1 会被忘掉,隐藏状态h^th^t 会被重置为当前输入的信息。更新门决定是否要将隐藏状态更新为新的状态h^th^t (作用相当于 LSTM 中的输出门) 。

    和 LSTM 比较一下:
    - GRU 少一个门,同时少了细胞状态CtCt 。
    - 在 LSTM 中,通过遗忘门和传入门控制信息的保留和传入;GRU 则通过重置门来控制是否要保留原来隐藏状态的信息,但是不再限制当前信息的传入。
    - 在 LSTM 中,虽然得到了新的细胞状态 Ct,但是还不能直接输出,而是需要经过一个过滤的处理:ht=ottanh(Ct)ht=ot∗tanh(Ct) ;同样,在 GRU 中, 虽然我们也得到了新的隐藏状态h^th^t , 但是还不能直接输出,而是通过更新门来控制最后的输出:ht=(1zt)ht1+zth^tht=(1−zt)∗ht−1+zt∗h^t

    多层LSTM

    多层LSTM是将LSTM进行叠加,其优点是能够在高层更抽象的表达特征,并且减少神经元的个数,增加识别准确率并且降低训练时间

  • 相关阅读:
    Linux 基本操作 (day2)
    Linux 简介(day1)
    python 反射、md5加密
    Python 简易版选课系统
    python 类与类之间的关系
    python 基本运算符
    python 基础操作--数据类型
    python初识
    生成器和生成器表达式
    SpringMvc测试框架详解----服务端测试
  • 原文地址:https://www.cnblogs.com/MY0213/p/9601821.html
Copyright © 2011-2022 走看看