zoukankan      html  css  js  c++  java
  • 清晰易懂的Numpy入门教程

    目录

    1.如何构建numpy数组2.如何观察数组属性的大小和形状3. 如何从数组提取特定的项3.1 如何反转数组3.3 如何计算n维数组的平均值,最小值和最大值4. 如何从现有的数组定义新数组5. 多维数组的重构(reshaping)和扁平(flattening)5.1 flatten()和ravel()的区别6. 如何通过numpy生成序列数(sequences),重复数(repetitions)和随机数(random)7.1 如何构建重复的序列数7.2 如何生存随机数7.3 如何得到数组独特(unique)项和个数(counts)8.小结

    Numpy是python语言中最基础和最强大的科学计算和数据处理的工具包,如数据分析工具pandas也是基于numpy构建的,机器学习包scikit-learn也大量使用了numpy方法。本文介绍了Numpy的n维数组在数据处理和分析的所有核心应用。

    1.如何构建numpy数组

    构建numpy数组的方法很多,比较常用的方法是用np.array函数对列表进行转化。

     1# 通过列表创建一维数组
    2import numpy as np
    3list1 = [0,1,2,3,4]
    4arr1d = np.array(list1)
    5
    6#打印数组和类型
    7print(type(arr1d))
    8arr1d
    9
    10#>
    11<type 'numpy.ndarray'>
    12[0 1 2 3 4]

    数组和列表最关键的区别是:数组是基于向量化操作的,列表不是,我们在实际项目中处理的数据一般是矩阵结构,对该数据以行向量或列向量的形式进行计算,向量计算是基于数组实现的,因此数组比列表的应用更广。

    函数可以应用到数组的每一项,列表不行。

    比如,不可以对列表的每一项数据都加2,这是错误的。

    1list1 + 2  # 错误

    可以对数组的某一项数据都加2

    1# Add 2 to each element of arr1d
    2arr1d + 2
    3
    4#> array([2, 3, 4, 5, 6])

    另一个区别是已经定义的numpy数组不可以增加数组大小,只能通过定义另一个数组来实现,但是列表可以增加大小。

    然而,numpy有更多的优势,让我们一起来发现。

    numpy可以通过列表中的列表来构建二维数组。

    1# Create a 2d array from a list of lists
    2list2 = [[0,1,2], [3,4,5], [6,7,8]]
    3arr2d = np.array(list2)
    4arr2d
    5
    6#> array([[0, 1, 2],
    7#>        [3, 4, 5],
    8#>        [6, 7, 8]])

    你也可以通过dtype参数指定数组的类型,一些最常用的numpy类型是:'float','int','bool','str'和'object'

    1# Create a float 2d array
    2arr2d_f = np.array(list2, dtype='float')
    3arr2d_f
    4
    5#> array([[ 0.,  1.,  2.],
    6#>        [ 3.,  4.,  5.],
    7#>        [ 6.,  7.,  8.]])

    输出结果的小数点表示float类型,你也可以通过 astype方法转换成不同的类型。

     1# 转换成‘int’类型
    2arr2d_f.astype('int')
    3
    4#> array([[0, 1, 2],
    5#>        [3, 4, 5],
    6#>        [6, 7, 8]])
    7
    8# 先转换‘int’类型,再转换‘str’类型
    9arr2d_f.astype('int').astype('str')
    10
    11#> array([['0', '1', '2'],
    12#>        ['3', '4', '5'],
    13#>        ['6', '7', '8']],
    14#>       dtype='U21')

    另一个区别是数组要求所有项是同一个类型,list没有这个限制。如果你想要一个数组包含不同类型,设置‘dtype’为'object'。

     1# 构建布尔类型数组
    2arr2d_b = np.array([1010], dtype='bool')
    3arr2d_b
    4
    5#> array([ True, False,  True], dtype=bool)
    6
    7# 构建包含数值和字符串的数组
    8arr1d_obj = np.array([1'a'], dtype='object')
    9arr1d_obj
    10
    11#> array([1, 'a'], dtype=object)

    最终使用 tolist()函数使数组转化为列表。

    1# Convert an array back to a list
    2arr1d_obj.tolist()
    3
    4#> [1, 'a']

    总结数组和列表主要的区别

    1. 数组支持向量化操作,列表不支持;

    2. 数组不能改变长度,列表可以;

    3. 数组的每一项都是同一类型,list可以有多种类型;

    4. 同样长度的数组所占的空间小于列表;

    2.如何观察数组属性的大小和形状

    一维数组由列表构建,二维数组arr2d由列表的列表构建,二维数组有行和列,比如矩阵,三维数组由嵌入了两个列表的列表构建。

    假设给定一个数组,我们怎么去了解该数组的属性。

    数组的属性包括

    数组的维度(ndim)

    数组的形状(shape)

    数组的类型(dtype)

    数组的大小(size)

    数组元素的表示(通过索引)

     1# 定义3行4列的二维数组
    2list2 = [[1234],[3456], [5678]]
    3arr2 = np.array(list2, dtype='float')
    4arr2
    5
    6#> array([[ 1.,  2.,  3.,  4.],
    7#>        [ 3.,  4.,  5.,  6.],
    8#>        [ 5.,  6.,  7.,  8.]])
    9
    10# 形状(shape)
    11print('Shape: ', arr2.shape)
    12
    13# 数组类型(dtype)
    14print('Datatype: ', arr2.dtype)
    15
    16# 数组大小(size)
    17print('Size: ', arr2.size)
    18
    19# 数组维度(ndim)
    20print('Num Dimensions: ', arr2.ndim)
    21
    22# 取数组第3行3列元素
    23print('items of 3 line 3 column: ', c[2,2])
    24
    25#> Shape:  (3, 4)
    26#> Datatype:  float64
    27#> Size:  12
    28#> Num Dimensions:  2
    29#> items of 3 line 3 column:  7

    3. 如何从数组提取特定的项

    数组的索引是从0开始计数的,与list类似。numpy数组通过方括号的参数以选择特定的元素。

    1# 选择矩阵的前两行两列
    2arr2[:2, :2]
    3list2[:2, :2]  # 错误
    4
    5#> array([[ 1.,  2.],
    6#>        [ 3.,  4.]])

    numpy数组支持布尔类型的索引,布尔型索引数组与过滤前(array-to-be-filtered)的数组大小相等,布尔型数组只包含Ture和False变量,Ture变量对应的数组索引位置保留了过滤前的值 。

     1arr2
    2
    3#> array([[ 1.,  2.,  3.,  4.],
    4#>          [ 3.,  4.,  5.,  6.],
    5#>          [ 5.,  6.,  7.,  8.]])
    6
    7# 对数组每一个元素是否满足某一条件,然后获得布尔类型的输出
    8b = arr2 > 4
    9b
    10
    11#> array([[False, False, False, False],
    12#>        [False, False,  True,  True],
    13#>        [ True,  True,  True,  True]], dtype=bool)
    14
    15# 取布尔型数组保留的原始数组的值
    16arr2[b]
    17
    18#> array([ 5.,  6.,  5.,  6.,  7.,  8.])

    3.1 如何反转数组

     1# 反转数组的行
    2arr2[::-1, ]
    3
    4#> array([[ 5.,  6.,  7.,  8.],
    5#>        [ 3.,  4.,  5.,  6.],
    6#>        [ 1.,  2.,  3.,  4.]])
    7
    8# Reverse the row and column positions
    9# 反转数组的行和列
    10arr2[::-1, ::-1]
    11
    12#> array([[ 8.,  7.,  6.,  5.],
    13#>        [ 6.,  5.,  4.,  3.],
    14#>        [ 4.,  3.,  2.,  1.]])

    3.2 如何处理数组的缺失值(missing)和无穷大(infinite)值
    缺失值可以用np.nan对象表示,np.inf表示无穷大值,下面用二维数组举例:

     1# 插入nan变量和inf变量
    2arr2[1,1] = np.nan  # not a number
    3arr2[1,2] = np.inf  # infinite
    4arr2
    5
    6#> array([[  1.,   2.,   3.,   4.],
    7#>        [  3.,  nan,  inf,   6.],
    8#>        [  5.,   6.,   7.,   8.]])
    9
    10# 用-1代替nan值和inf值
    11missing_bool = np.isnan(arr2) | np.isinf(arr2)
    12arr2[missing_bool] = -1  
    13arr2
    14
    15#> array([[ 1.,  2.,  3.,  4.],
    16#>        [ 3., -1., -1.,  6.],
    17#>        [ 5.,  6.,  7.,  8.]])

    3.3 如何计算n维数组的平均值,最小值和最大值

    1# 平均值,最大值,最小值
    2print("Mean value is: ", arr2.mean())
    3print("Max value is: ", arr2.max())
    4print("Min value is: ", arr2.min())
    5
    6#> Mean value is:  3.58333333333
    7#> Max value is:  8.0
    8#> Min value is:  -1.0

    如果要求数组的行或列的最小值,使用np.amin函数

    1# Row wise and column wise min
    2# 求数组行和列的最小值
    3# axis=0表示列,1表示行
    4print("Column wise minimum: ", np.amin(arr2, axis=0))
    5print("Row wise minimum: ", np.amin(arr2, axis=1))
    6
    7#> Column wise minimum:  [ 1. -1. -1.  4.]
    8#> Row wise minimum:  [ 1. -1.  5.]

    对数组的每个元素进行累加,得到一维数组,一维数组的大小与二维数组相同。

    1# 累加
    2np.cumsum(arr2)
    3
    4#> array([  1.,   3.,   6.,  10.,  13.,  12.,  11.,  17.,  22.,  28.,  35., 43.])

    4. 如何从现有的数组定义新数组

    如果使用赋值运算符从父数组定义新数组,新数组与父数组共占同一个内存空间,如果改变新数组的值,那么父数组也相应的改变。

    为了让新数组与父数组相互独立,你需要使用copy()函数。所有父数组都使用copy()方法构建新数组。

     1# Assign portion of arr2 to arr2a. Doesn't really create a new array.
    2# 分配arr2数组给新数组arr2a,下面方法并没有定新数组
    3arr2a = arr2[:2,:2]  
    4arr2a[:1, :1] = 100  # arr2相应位置也改变了
    5arr2
    6
    7#> array([[ 100.,    2.,    3.,    4.],
    8#>        [   3.,   -1.,   -1.,    6.],
    9#>        [   5.,    6.,    7.,    8.]])
    10
    11# 赋值arr2数组的一部分给新数组arr2b
    12arr2b = arr2[:2, :2].copy()
    13arr2b[:1, :1] = 101  # arr2没有改变
    14arr2
    15
    16#> array([[ 100.,    2.,    3.,    4.],
    17#>        [   3.,   -1.,   -1.,    6.],
    18#>        [   5.,    6.,    7.,    8.]])

    5. 多维数组的重构(reshaping)和扁平(flattening)

    重构(reshaping)是改变了数组项的排列,即改变了数组的形状,未改变数组的维数。

    扁平(flattening)是对多维数组转化为一维数组。

    1# 3x4数组重构为4x3数组
    2arr2.reshape(43)
    3
    4#> array([[ 100.,    2.,    3.],
    5#>        [   4.,    3.,   -1.],
    6#>        [  -1.,    6.,    5.],
    7#>        [   6.,    7.,    8.]])

    5.1 flatten()和ravel()的区别

    数组的扁平化有两种常用的方法,flatten()和ravel() 。flatten处理后的数组是父数组的引用,因此新数组的任何变化也会改变父数组,因其未用复制的方式构建数组,内存使用效率高,ravel通过复制的方式构建新数组。

     1# flatten方法
    2arr2.flatten()
    3
    4#> array([ 100.,    2.,    3.,    4.,    3.,   -1.,   -1.,    6.,    5., 6.,    7.,    8.])
    5
    6# flatten方法
    7b1 = arr2.flatten()  
    8b1[0] = 100  # 改变b1的值并未影响arr2
    9arr2
    10
    11#> array([[ 100.,    2.,    3.,    4.],
    12#>        [   3.,   -1.,   -1.,    6.],
    13#>        [   5.,    6.,    7.,    8.]])
    14
    15# ravel方法
    16b2 = arr2.ravel()  
    17b2[0] = 101  # 改变b2值,相应的改变了arr2值
    18arr2
    19
    20#> array([[ 101.,    2.,    3.,    4.],
    21#>        [   3.,   -1.,   -1.,    6.],
    22#>        [   5.,    6.,    7.,    8.]])

    6. 如何通过numpy生成序列数(sequences),重复数(repetitions)和随机数(random)

    np.arrange函数手动生成指定数目的序列数,与ndarray作用一样。

     1# 默认下限为0
    2print(np.arange(5))  
    3
    4# 0 to 9,默认步数为1
    5print(np.arange(010))  
    6
    7# 递增步数2
    8print(np.arange(0102))  
    9
    10# 降序
    11print(np.arange(100-1))
    12
    13#> [0 1 2 3 4]
    14#> [0 1 2 3 4 5 6 7 8 9]
    15#> [0 2 4 6 8]
    16#> [10  9  8  7  6  5  4  3  2  1]

    上例是通过np.arrange设置初始位置和结束位置来生成序列数,如果我们设置数组的元素个数,那么可以自动计算数组的递增值。

    如构建1到50的数组,数组有10个元素,使用np.linspace总动计算数组的递增值。

    1# 起始位置和结束位置分别为1和50
    2np.linspace(start=1, stop=50, num=10, dtype=int)
    3
    4#> array([ 1,  6, 11, 17, 22, 28, 33, 39, 44, 50])

    我们注意到上面例子的递增值并不相等,有5和6两个值,原因是计算递增值采用了四舍五入的算法(rounding)。与np.linspace类似,np.logspace以对数尺度的方式增长。

    1# 设置数组的精度为小数点后两位
    2np.set_printoptions(precision=2)  
    3
    4# 起点为 10^1 and 终点为 10^50,数组元素个数10,以10为底数
    5np.logspace(start=1, stop=50, num=10, base=10
    6
    7#> array([  1.00e+01,   2.78e+06,   7.74e+11,   2.15e+17,   5.99e+22,
    8#>          1.67e+28,   4.64e+33,   1.29e+39,   3.59e+44,   1.00e+50])

    初始化数组的元素全为1或全为0。

    1np.zeros([2,2])
    2#> array([[ 0.,  0.],
    3#>        [ 0.,  0.]])
    4
    5np.ones([2,2])
    6#> array([[ 1.,  1.],
    7#>        [ 1.,  1.]])

    7.1 如何构建重复的序列数

    np.tile重复整个的数组或列表n次,np.repeat重复数组每一项n次。

     1a = [1,2,3
    2
    3# 重复数组a两次
    4print('Tile:   ', np.tile(a, 2))
    5
    6# 重复数组a每项两次
    7print('Repeat: ', np.repeat(a, 2))
    8
    9#> Tile:    [1 2 3 1 2 3]
    10#> Repeat:  [1 1 2 2 3 3]

    7.2 如何生存随机数

    random模块包含的函数可以生成任一数组形状的随机数和统计分布。

     1# 生成2行2列的[0,1)的随机数
    2print(np.random.rand(2,2))
    3
    4# 生成均值为0方差为1的2行2列的正态分布值
    5print(np.random.randn(2,2))
    6
    7# 生成[0,10)的2行2列的随机整数
    8print(np.random.randint(010, size=[2,2]))
    9
    10# 生成一个[0,1)的随机数
    11print(np.random.random())
    12
    13# 生成[0,1)的2行2列的随机数
    14print(np.random.random(size=[2,2]))
    15
    16# 从给定的列表等概率抽样10次
    17print(np.random.choice(['a''e''i''o''u'], size=10))  
    18
    19# 从给定的列表和对应的概率分布抽样10次
    20print(np.random.choice(['a''e''i''o''u'], size=10, p=[0.3.10.10.40.1]))  # picks more o's
    21
    22#> [[ 0.84  0.7 ]
    23#>  [ 0.52  0.8 ]]
    24
    25#> [[-0.06 -1.55]
    26#>  [ 0.47 -0.04]]
    27
    28#> [[4 0]
    29#>  [8 7]]
    30
    31#> 0.08737272424956832
    32
    33#> [[ 0.45  0.78]
    34#>  [ 0.03  0.74]]
    35
    36#> ['i' 'a' 'e' 'e' 'a' 'u' 'o' 'e' 'i' 'u']
    37#> ['o' 'a' 'e' 'a' 'a' 'o' 'o' 'o' 'a' 'o']

    7.3 如何得到数组独特(unique)项和个数(counts)

    np.unique函数去除数组中重复的元素,设置return_counts参数为True,得到数组每一项的个数。

     1# 定义范围为[0,10),个数为10的随机整数数组
    2np.random.seed(100)
    3arr_rand = np.random.randint(010, size=10)
    4print(arr_rand)
    5
    6#> [8 8 3 7 7 0 4 2 5 2]
    7
    8# 得到数组独特的项和相应的个数
    9uniqs, counts = np.unique(arr_rand, return_counts=True)
    10print("Unique items : ", uniqs)
    11print("Counts       : ", counts)
    12
    13#> Unique items :  [0 2 3 4 5 7 8]
    14#> Counts       :  [1 2 1 1 1 2 2]

    8.小结

    本文比较全面的介绍了numpy的基本用法,希望对numpy还不熟悉的同学有所帮助。

    请扫码关注我的公众号
  • 相关阅读:
    Android开发与Sequoyah的安装问题
    Discuz 数据库各表的作用
    jQuery-File-Upload $(...).fileupload is not a function $.widget is not a function
    phpstorm xdebug 无法断点调试问题
    Android Service 启动流程
    Discuz! 全局变量说明
    Discuz! X3 数据表、数据字段说明
    Spring Boot 搭建
    Android组件化开发(注意事项)
    NestedScrollView嵌套RecycleView发生的小问题
  • 原文地址:https://www.cnblogs.com/MachineLearningBayes/p/10834706.html
Copyright © 2011-2022 走看看