zoukankan      html  css  js  c++  java
  • tensorflow 2.0 技巧 | 自定义tf.keras.Model的坑

    自定义tf.keras.Model需要注意的点

    model.save()

    • subclass Model 是不能直接save的,save成.h5,但是能够save_weights,或者save_format="tf"
    NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work for subclassed models, because such models are defined via the body of a Python method, which isn't safely serializable. Consider saving to the Tensorflow SavedModel format (by setting save_format="tf") or using `save_weights`.
    

    model.trainable_variables

    • __init__若没有注册该layers,那么在后面应用梯度时会找不到model.trainable_variables。
      像下面这样是不行的:
    class Map_model(tf.keras.Model):
        def __init__(self, is_train=False):
            super(Map_model, self).__init__()
        def call(self, x):
            x = tf.keras.layers.Dense(10, activation='relu')
            return x
    

    model.summary()

    • 需要先指定input_shape,或者你直接fit一遍它也能自动确定
        model.build(input_shape=(None, 448, 448, 3))
        print(model.summary())
    
    class Map_model(tf.keras.Model):
        def __init__(self, is_train=False):
            super(Map_model, self).__init__()
            self.map_f1 = tf.keras.layers.Dense(10, activation='relu', trainable=is_train)
            # self.map_f2 = tf.keras.layers.Dense(6, activation='relu')
            self.map_f3 = tf.keras.layers.Dense(3, activation='softmax', trainable=is_train)
    
        def call(self, x):
            x = self.map_f1(x)
            # x = self.map_f2(x)
            return self.map_f3(x)
    
    
    @tf.function
    def train_step(mmodel, label, L_label, loss_object, train_loss, train_accuracy, optimizer):
        with tf.GradientTape() as tape:
            L_label_pred = mmodel(label)
            loss = loss_object(L_label, L_label_pred)
        gradient_l = tape.gradient(loss, mmodel.trainable_variables)
        train_loss(loss)
        train_accuracy(L_label, L_label_pred)
        optimizer.apply_gradients(zip(gradient_l, mmodel.trainable_variables))
    
    
    def train():
        mmodel = Map_model(is_train=True)
        optimizer = tf.keras.optimizers.Adam(0.01)
        loss_object = tf.keras.losses.CategoricalCrossentropy()
        train_loss = tf.keras.metrics.Mean(name='train_loss')
        train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy')
    
        EPOCHS = 0
        labels = range(1, 30)  # labels = truth_label -1
        L_labels = [int(prpcs.map2Lclass(l)) for l in labels]
        labels = [l - 1 for l in labels]
        labels_onehot = tf.one_hot(labels, depth=29)
        L_labels_onehot = tf.one_hot(L_labels, depth=3)
        EPS = 1e-6
        loss_e = 0x7f7f7f
        while loss_e > EPS:
            EPOCHS += 1
            train_loss.reset_states()
            train_accuracy.reset_states()
            train_step(mmodel, labels_onehot, L_labels_onehot, loss_object, train_loss, train_accuracy, optimizer)
    
            template = 'Epoch {}, Loss: {}, Accuracy: {}'
            print(template.format(EPOCHS,
                                  train_loss.result(),
                                  train_accuracy.result() * 100))
            loss_e = train_loss.result()
        print("labels_onehot shape:", labels_onehot.shape)
        model_path = r'./models/'
        if not os.path.exists(model_path):
            os.makedirs(model_path)
        mmodel.save(os.path.join(model_path, 'map_model_{}'.format(EPS)))
        mmodel.save_weights(os.path.join(model_path, 'map_model_weights_{}'.format(EPS)))
        print("Save model!")
    
  • 相关阅读:
    深入浅出WPF-08.Event( 事件)01
    深入浅出WPF-07.Property(属性)
    深入浅出WPF-06.Binding(绑定)03
    深入浅出WPF-06.Binding(绑定)02
    深入浅出WPF-06.Binding(绑定)01
    常用快递电子面单账户申请详解(顺丰、中通、圆通、申通、百世、韵达)
    快递鸟电子面单批量打印以及模板设置
    快递公司电子面单怎么申请充值单号(中通、圆通、申通、韵达、百世)
    不限量的快递鸟单号查询接口-JAVA对接方法
    快递单号识别查询api接口调用对接demo
  • 原文地址:https://www.cnblogs.com/ManWingloeng/p/11650857.html
Copyright © 2011-2022 走看看