zoukankan      html  css  js  c++  java
  • 根据svm将视频帧转换为img

    # -*- coding: utf-8 -*-
    """
    Created on Mon Oct  1 09:32:37 2018
    
    @author: Manuel
    """
    
    import numpy as np
    from tkinter import *
    #import tkinter
    from PIL import Image, ImageTk
    from scipy.misc import imread
    import matplotlib.pyplot as plt
    from sklearn.svm import SVC
    from time import gmtime, strftime
    import cv2
    
    #逐帧获取图片     
    videoFile = 'py5.mp4'
    cap = cv2.VideoCapture(videoFile)
    numF=cap.get(cv2.CAP_PROP_FRAME_COUNT)
    fps=cap.get(cv2.CAP_PROP_FPS)
    #cap.set(cv2.CAP_PROP_FRAME_WIDTH,640)
    #cap.set(cv2.CAP_PROP_FRAME_HEIGHT,480)
    class SVM_Classifier(Frame):
        def __init__(self, master=None):
            self.root = Tk()#tkinter.TK()
            Frame.__init__(self, master)
            Pack.config(self)
            self.menus()
            self.createWidgets()
            self.after(10, self.callback)
            self.state=0
            global X_list
            X_list=[]
            global y_list
            y_list=[]
        def menus(self):
            allmenu = Menu(self.root)#tkinter.Menu
            # 添加子菜单
            menu1 = Menu(allmenu, tearoff=0)
            menu2=Menu(allmenu, tearoff=0)
            # 添加选项卡
            menu1.add_command(label='前景', command=self.target)
            menu1.add_command(label='背景', command=self.background)
            allmenu.add_cascade(label='样本标注', menu=menu1) 
            menu2.add_command(label='SVM学习并显示结果', command=self.processing)
            allmenu.add_cascade(label='分析处理', menu=menu2)
            self.root.config(menu=allmenu)
        def target(self):
            self.state=1
        def background(self):
            self.state=2
        def processing(self):
            self.state=0
            X=np.array(X_list)
            y=np.array(y_list)
            print(X)
            print(y)
            #将X,Y写入txt文件
    #        np_X=[]
    #        np_y=[]
    #        np_X.append(X)
    #        np_y.append(y)
    #        svm_x='svm_x.txt'
    #        svm_y='svm_y.txt'
    #        X1_string = '
    '.join(str(x) for x in X)
    #        with open(svm_x,'w') as svm_file:
    #            svm_file.write(X1_string)
    #        y1_string = '
    '.join(str(x) for x in y)
    #        with open(svm_y,'w') as svm_file:
    #            svm_file.write(y1_string)
            
            #支持向量机学习
            clf=SVC(kernel="linear", C=0.025)#SVC(gamma=2, C=1)
            clf.fit(X, y)#SVM学习
            score = clf.score(X,y)
            print('score=',score)
            
            
    
    
            while(True):
                ret, frame = cap.read()
                if ret ==True:
                    image = frame
                    #img=rotate(frame,-90)     
                    #img=np.rot90(frame)
                    #img=np.rot90(img) 
                    #img=np.rot90(img) 
                    cv2.imshow('my', image)
                    f = strftime("%Y%m%d%H%M%S.jpg", gmtime())   
                    cv2.imwrite(f, image)
        #            image = imread("test.jpg")#fruits.png
                    image=imread(f)
                    XX=[]
                    for i in range(image.shape[0]):
                        for j in range(image.shape[1]):
                            XX.append([image[i,j,0],image[i,j,1],image[i,j,2]])
                    Z=clf.decision_function(XX)
                    ZZ=np.array(Z)
                    ZZ=ZZ.reshape(image.shape[0],image.shape[1])
                    for i in range(image.shape[0]):
                        for j in range(image.shape[1]):
                            if ZZ[i,j]<0:
                                image[i,j,0]=0
                                image[i,j,1]=0
                                image[i,j,2]=0
                    image= image[...,::-1]
                    _,image=cv2.threshold(image,10,255,cv2.THRESH_BINARY)
    #                image= cv2.adaptiveThreshold(image,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
    #                _,image=cv2.threshold(image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
        #            cv2.imshow("image CR", cr1)
                    cv2.imshow("Skin", image)
                    
            #        img0 = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#将图片转换为灰度图片
                    f = strftime("%Y%m%d%H%M%S_.jpg", gmtime())   
                    cv2.imwrite('2/'+ f, image)
                    #if img.size == 0:
                     #   break
                    
                if cv2.waitKey(200) & 0xFF == ord('q'):
                    break
        cap.release
        cv2.destroyAllWindows()
                
            
    #        for i in range(image.shape[0]):
    #            for j in range(image.shape[1]):
    #                Z = clf.decision_function([[image[i,j,0],image[i,j,1],image[i,j,2]]])
    #                if Z[0]<0:
    #                    image[i,j,0]=0
    #                    image[i,j,1]=0
    #                    image[i,j,2]=0
    #    plt.imshow(image)
    #    plt.show()
    
        def createWidgets(self):
            ## The playing field
            self.draw = Canvas(self, width=640, height=480)
            self.im=Image.open('20190104030935.jpg')#fruits.png
            self.tkimg=ImageTk.PhotoImage(self.im)
            self.myImg=self.draw.create_image(10,10,anchor=NW,image=self.tkimg)
            
            self.draw.pack(side=LEFT)
        def mouse_pick(self,event):
            rgb=self.im.getpixel((event.x-10,event.y-10))
            print("clicked at:x=", event.x-10,'y=',event.y-10,' r=',rgb[0],'g=',rgb[1],'b=',rgb[2])
            X_list.append([np.uint8(rgb[0]),np.uint8(rgb[1]),np.uint8(rgb[2])])
            if self.state==1:
                self.pick_points = self.draw.create_oval((event.x - 2),(event.y - 2),(event.x + 2),(event.y + 2),fill="red")
                y_list.append(1)#添加入前景标签
            if self.state==2:
                self.pick_points = self.draw.create_oval((event.x - 2),(event.y - 2),(event.x + 2),(event.y + 2),fill="green")
                y=y_list.append(-1)#添加入背景标签
        def callback(self, *args):
            self.draw.tag_bind(self.myImg, "<Button-1>", self.mouse_pick)
           
    game = SVM_Classifier()
    game.mainloop()
  • 相关阅读:
    delphi10.3.1不支持.net 5
    FIREDAC返回多结果集
    咏南中间件多种部署方式
    ISAPI多进程设置
    咏南ISAPI中间件
    datasnap isapi程序iis设置
    mormot支持TCP/IP
    咏南中间件支持JWT TOKEN
    基于Token的身份认证 与 基于服务器的身份认证
    delphi开源JWT
  • 原文地址:https://www.cnblogs.com/Manuel/p/10430020.html
Copyright © 2011-2022 走看看