zoukankan      html  css  js  c++  java
  • python 批量生成xml标记文件(连通域坐标分割)

    #!/usr/bin/python
    # -*- coding=utf-8 -*-
    # author : Manuel
    # date: 2019-05-15
    
    from xml.etree import ElementTree as ET
    import numpy as np
    from skimage import data,filters,segmentation,measure,morphology,color
    from scipy.misc import imread
    import os
    from os import getcwd
    
    
    IMAGES_LIST=os.listdir('ls')#图片路径
    
    #连通域分割,返回连通域坐标列表
    def connected_domain_position_get(image):
        coordinates_list=[]#创建坐标列表
        thresh = filters.threshold_otsu(image)  # 阈值分割,自动返回一个阈值
        bw = morphology.closing(image > thresh,
                                morphology.square(3))  # (image > thresh, morphology.square(3)) #闭运算#将0,1转换成bool
        cleared = bw.copy()  # 复制
        segmentation.clear_border(cleared)  # 清除与边界相连的目标物
        label_image = measure.label(cleared)  # 连通区域标记
        borders = np.logical_xor(bw, cleared)  # 逻辑异或
        label_image[borders] = -1  # ?
        # image_label_overlay = color.label2rgb(label_image, image=image)  # 不同标记用不同颜色显示
        for region in measure.regionprops(label_image):  # 循环得到每一个连通区域属性集
            # 忽略小区域
            if region.area < 1000:
                continue
            # print(region.bbox)
            # 绘制外包矩形
            minr, minc, maxr, maxc = region.bbox
            # rect = mpatches.Rectangle((minc - 10, minr - 10), maxc - minc + 20, maxr - minr + 20,
            #                           fill=False, edgecolor='red',
            #                           linewidth=2)  # mpatches.Rectangle(矩形左上顶点坐标(x,y), width, height)
            left = minc - 10
            upper = minr - 10
            right = maxc + 10
            lower = maxr + 10
            coordinates_list.append([left,upper,right,lower])#将每组连通域坐标添加进坐标列表
        return coordinates_list#返回连通域坐标列表
    
    #创建一级分支object
    def create_object(root,xi,yi,xa,ya):#参数依次,树根,xmin,ymin,xmax,ymax
        #创建一级分支object
        _object=ET.SubElement(root,'object')
        #创建二级分支
        name=ET.SubElement(_object,'name')
        name.text='AreaMissing'
        pose=ET.SubElement(_object,'pose')
        pose.text='Unspecified'
        truncated=ET.SubElement(_object,'truncated')
        truncated.text='0'
        difficult=ET.SubElement(_object,'difficult')
        difficult.text='0'
        #创建bndbox
        bndbox=ET.SubElement(_object,'bndbox')
        xmin=ET.SubElement(bndbox,'xmin')
        xmin.text='%s'%xi
        ymin = ET.SubElement(bndbox, 'ymin')
        ymin.text = '%s'%yi
        xmax = ET.SubElement(bndbox, 'xmax')
        xmax.text = '%s'%xa
        ymax = ET.SubElement(bndbox, 'ymax')
        ymax.text = '%s'%ya
    
    #创建xml文件
    def create_tree(image_name):
        global annotation
        # 创建树根annotation
        annotation = ET.Element('annotation')
        #创建一级分支folder
        folder = ET.SubElement(annotation,'folder')
        #添加folder标签内容
        folder.text=('ls')
    
        #创建一级分支filename
        filename=ET.SubElement(annotation,'filename')
        filename.text=image_name.strip('.jpg')
    
        #创建一级分支path
        path=ET.SubElement(annotation,'path')
        path.text=getcwd()+'/ls/%s'%image_name#用于返回当前工作目录
    
        #创建一级分支source
        source=ET.SubElement(annotation,'source')
        #创建source下的二级分支database
        database=ET.SubElement(source,'database')
        database.text='Unknown'
    
        #创建一级分支size
        size=ET.SubElement(annotation,'size')
        #创建size下的二级分支图像的宽、高及depth
        width=ET.SubElement(size,'width')
        width.text='512'
        height=ET.SubElement(size,'height')
        height.text='384'
        depth = ET.SubElement(size,'depth')
        depth.text = '3'
    
        #创建一级分支segmented
        segmented = ET.SubElement(annotation,'segmented')
        segmented.text = '0'
    
    
    
    
    def main():
        for image_name in IMAGES_LIST:
            #只处理jpg文件
            if image_name.endswith('jpg'):
                #将图像通过连通域分割,得到连通域坐标列表,该列表的形式[[a,b,c,d],[e,f,g,h]...,]
                image = color.rgb2gray(imread(os.path.join(r'./ls', image_name)))
                coordinates_list = connected_domain_position_get(image)
                create_tree(image_name)
    
                for coordinate_list in coordinates_list:
                    create_object(annotation, coordinate_list[0], coordinate_list[1], coordinate_list[2], coordinate_list[3])
                    # if coordinates_list==[]:
                    #     break
                # 将树模型写入xml文件
                tree = ET.ElementTree(annotation)
                tree.write('ls/%s.xml' % image_name.strip('.jpg'))
    
    
    
    if __name__ == '__main__':
        main()

    注:xml中所有值必须是字符串,否则报错

  • 相关阅读:
    python flsak 框架
    postman
    压力测试和负载测试
    软件测试相关内容
    Linux常用基本命令
    leetcode刷题——反转字符串
    leetcode——搜索插入位置
    leetcode刷题——移除元素
    leetcode 刷题 ——删除排序数组中的重复项
    json.decoder.JSONDecodeError: Expecting value 错误的处理
  • 原文地址:https://www.cnblogs.com/Manuel/p/10871188.html
Copyright © 2011-2022 走看看