zoukankan      html  css  js  c++  java
  • 描述符__get__(),__set__(),__delete__()

    1 描述符是什么:描述符本质就是一个新式类,在这个新式类中,至少实现了__get__(),__set__(),__delete__()中的一个,这也被称为描述符协议
    __get__():调用一个属性时,触发
    __set__():为一个属性赋值时,触发
    __delete__():采用del删除属性时,触发

    复制代码
    class Foo: #在python3中Foo是新式类,它实现了三种方法,这个类就被称作一个描述符
        def __get__(self, instance, owner):
            pass
        def __set__(self, instance, value):
            pass
        def __delete__(self, instance):
            pass
    复制代码

    2 描述符是干什么的:描述符的作用是用来代理另外一个类的属性的(必须把描述符定义成这个类的类属性,不能定义到构造函数中)

    复制代码
    class Foo:
        def __get__(self, instance, owner):
            print('触发get')
        def __set__(self, instance, value):
            print('触发set')
        def __delete__(self, instance):
            print('触发delete')
    
    #包含这三个方法的新式类称为描述符,由这个类产生的实例进行属性的调用/赋值/删除,并不会触发这三个方法
    f1=Foo()
    f1.name='egon'
    f1.name
    del f1.name
    #疑问:何时,何地,会触发这三个方法的执行
    复制代码
    复制代码
    #描述符Str
    class Str:
        def __get__(self, instance, owner):
            print('Str调用')
        def __set__(self, instance, value):
            print('Str设置...')
        def __delete__(self, instance):
            print('Str删除...')
    
    #描述符Int
    class Int:
        def __get__(self, instance, owner):
            print('Int调用')
        def __set__(self, instance, value):
            print('Int设置...')
        def __delete__(self, instance):
            print('Int删除...')
    
    class People:
        name=Str()
        age=Int()
        def __init__(self,name,age): #name被Str类代理,age被Int类代理,
            self.name=name
            self.age=age
    
    #何地?:定义成另外一个类的类属性
    
    #何时?:且看下列演示
    
    p1=People('alex',18)
    
    #描述符Str的使用
    p1.name
    p1.name='egon'
    del p1.name
    
    #描述符Int的使用
    p1.age
    p1.age=18
    del p1.age
    
    #我们来瞅瞅到底发生了什么
    print(p1.__dict__)
    print(People.__dict__)
    
    #补充
    print(type(p1) == People) #type(obj)其实是查看obj是由哪个类实例化来的
    print(type(p1).__dict__ == People.__dict__)
    复制代码

    3 描述符分两种
    一 数据描述符:至少实现了__get__()和__set__()

    1 class Foo:
    2     def __set__(self, instance, value):
    3         print('set')
    4     def __get__(self, instance, owner):
    5         print('get')

    二 非数据描述符:没有实现__set__()

    1 class Foo:
    2     def __get__(self, instance, owner):
    3         print('get')

    4 注意事项:
    一 描述符本身应该定义成新式类,被代理的类也应该是新式类
    二 必须把描述符定义成这个类的类属性,不能为定义到构造函数中
    三 要严格遵循该优先级,优先级由高到底分别是
    1.类属性
    2.数据描述符
    3.实例属性
    4.非数据描述符
    5.找不到的属性触发__getattr__()

    复制代码
    #描述符Str
    class Str:
        def __get__(self, instance, owner):
            print('Str调用')
        def __set__(self, instance, value):
            print('Str设置...')
        def __delete__(self, instance):
            print('Str删除...')
    
    class People:
        name=Str()
        def __init__(self,name,age): #name被Str类代理,age被Int类代理,
            self.name=name
            self.age=age
    
    
    #基于上面的演示,我们已经知道,在一个类中定义描述符它就是一个类属性,存在于类的属性字典中,而不是实例的属性字典
    
    #那既然描述符被定义成了一个类属性,直接通过类名也一定可以调用吧,没错
    People.name #恩,调用类属性name,本质就是在调用描述符Str,触发了__get__()
    
    People.name='egon' #那赋值呢,我去,并没有触发__set__()
    del People.name #赶紧试试del,我去,也没有触发__delete__()
    #结论:描述符对类没有作用-------->傻逼到家的结论
    
    '''
    原因:描述符在使用时被定义成另外一个类的类属性,因而类属性比二次加工的描述符伪装而来的类属性有更高的优先级
    People.name #恩,调用类属性name,找不到就去找描述符伪装的类属性name,触发了__get__()
    
    People.name='egon' #那赋值呢,直接赋值了一个类属性,它拥有更高的优先级,相当于覆盖了描述符,肯定不会触发描述符的__set__()
    del People.name #同上
    '''
    复制代码
    复制代码
    #描述符Str
    class Str:
        def __get__(self, instance, owner):
            print('Str调用')
        def __set__(self, instance, value):
            print('Str设置...')
        def __delete__(self, instance):
            print('Str删除...')
    
    class People:
        name=Str()
        def __init__(self,name,age): #name被Str类代理,age被Int类代理,
            self.name=name
            self.age=age
    
    
    p1=People('egon',18)
    
    #如果描述符是一个数据描述符(即有__get__又有__set__),那么p1.name的调用与赋值都是触发描述符的操作,于p1本身无关了,相当于覆盖了实例的属性
    p1.name='egonnnnnn'
    p1.name
    print(p1.__dict__)#实例的属性字典中没有name,因为name是一个数据描述符,优先级高于实例属性,查看/赋值/删除都是跟描述符有关,与实例无关了
    del p1.name
    复制代码
    复制代码
    class Foo:
        def func(self):
            print('我胡汉三又回来了')
    f1=Foo()
    f1.func() #调用类的方法,也可以说是调用非数据描述符
    #函数是一个非数据描述符对象(一切皆对象么)
    print(dir(Foo.func))
    print(hasattr(Foo.func,'__set__'))
    print(hasattr(Foo.func,'__get__'))
    print(hasattr(Foo.func,'__delete__'))
    #有人可能会问,描述符不都是类么,函数怎么算也应该是一个对象啊,怎么就是描述符了
    #笨蛋哥,描述符是类没问题,描述符在应用的时候不都是实例化成一个类属性么
    #函数就是一个由非描述符类实例化得到的对象
    #没错,字符串也一样
    
    
    f1.func='这是实例属性啊'
    print(f1.func)
    
    del f1.func #删掉了非数据
    f1.func()
    复制代码
     
    复制代码
    class Foo:
        def __set__(self, instance, value):
            print('set')
        def __get__(self, instance, owner):
            print('get')
    class Room:
        name=Foo()
        def __init__(self,name,width,length):
            self.name=name
            self.width=width
            self.length=length
    
    
    #name是一个数据描述符,因为name=Foo()而Foo实现了get和set方法,因而比实例属性有更高的优先级
    #对实例的属性操作,触发的都是描述符的
    r1=Room('厕所',1,1)
    r1.name
    r1.name='厨房'
    
    
    
    class Foo:
        def __get__(self, instance, owner):
            print('get')
    class Room:
        name=Foo()
        def __init__(self,name,width,length):
            self.name=name
            self.width=width
            self.length=length
    
    
    #name是一个非数据描述符,因为name=Foo()而Foo没有实现set方法,因而比实例属性有更低的优先级
    #对实例的属性操作,触发的都是实例自己的
    r1=Room('厕所',1,1)
    r1.name
    r1.name='厨房'
    复制代码
    复制代码
    class Foo:
        def func(self):
            print('我胡汉三又回来了')
    
        def __getattr__(self, item):
            print('找不到了当然是来找我啦',item)
    f1=Foo()
    
    f1.xxxxxxxxxxx
    复制代码

    5 描述符使用

    众所周知,python是弱类型语言,即参数的赋值没有类型限制,下面我们通过描述符机制来实现类型限制功能

    复制代码
    class Str:
        def __init__(self,name):
            self.name=name
        def __get__(self, instance, owner):
            print('get--->',instance,owner)
            return instance.__dict__[self.name]
    
        def __set__(self, instance, value):
            print('set--->',instance,value)
            instance.__dict__[self.name]=value
        def __delete__(self, instance):
            print('delete--->',instance)
            instance.__dict__.pop(self.name)
    
    
    class People:
        name=Str('name')
        def __init__(self,name,age,salary):
            self.name=name
            self.age=age
            self.salary=salary
    
    p1=People('egon',18,3231.3)
    
    #调用
    print(p1.__dict__)
    p1.name
    
    #赋值
    print(p1.__dict__)
    p1.name='egonlin'
    print(p1.__dict__)
    
    #删除
    print(p1.__dict__)
    del p1.name
    print(p1.__dict__)
    复制代码
    复制代码
    class Str:
        def __init__(self,name):
            self.name=name
        def __get__(self, instance, owner):
            print('get--->',instance,owner)
            return instance.__dict__[self.name]
    
        def __set__(self, instance, value):
            print('set--->',instance,value)
            instance.__dict__[self.name]=value
        def __delete__(self, instance):
            print('delete--->',instance)
            instance.__dict__.pop(self.name)
    
    
    class People:
        name=Str('name')
        def __init__(self,name,age,salary):
            self.name=name
            self.age=age
            self.salary=salary
    
    #疑问:如果我用类名去操作属性呢
    People.name #报错,错误的根源在于类去操作属性时,会把None传给instance
    
    #修订__get__方法
    class Str:
        def __init__(self,name):
            self.name=name
        def __get__(self, instance, owner):
            print('get--->',instance,owner)
            if instance is None:
                return self
            return instance.__dict__[self.name]
    
        def __set__(self, instance, value):
            print('set--->',instance,value)
            instance.__dict__[self.name]=value
        def __delete__(self, instance):
            print('delete--->',instance)
            instance.__dict__.pop(self.name)
    
    
    class People:
        name=Str('name')
        def __init__(self,name,age,salary):
            self.name=name
            self.age=age
            self.salary=salary
    print(People.name) #完美,解决
    复制代码
    复制代码
    class Str:
        def __init__(self,name,expected_type):
            self.name=name
            self.expected_type=expected_type
        def __get__(self, instance, owner):
            print('get--->',instance,owner)
            if instance is None:
                return self
            return instance.__dict__[self.name]
    
        def __set__(self, instance, value):
            print('set--->',instance,value)
            if not isinstance(value,self.expected_type): #如果不是期望的类型,则抛出异常
                raise TypeError('Expected %s' %str(self.expected_type))
            instance.__dict__[self.name]=value
        def __delete__(self, instance):
            print('delete--->',instance)
            instance.__dict__.pop(self.name)
    
    
    class People:
        name=Str('name',str) #新增类型限制str
        def __init__(self,name,age,salary):
            self.name=name
            self.age=age
            self.salary=salary
    
    p1=People(123,18,3333.3)#传入的name因不是字符串类型而抛出异常
    复制代码
    复制代码
    class Typed:
        def __init__(self,name,expected_type):
            self.name=name
            self.expected_type=expected_type
        def __get__(self, instance, owner):
            print('get--->',instance,owner)
            if instance is None:
                return self
            return instance.__dict__[self.name]
    
        def __set__(self, instance, value):
            print('set--->',instance,value)
            if not isinstance(value,self.expected_type):
                raise TypeError('Expected %s' %str(self.expected_type))
            instance.__dict__[self.name]=value
        def __delete__(self, instance):
            print('delete--->',instance)
            instance.__dict__.pop(self.name)
    
    
    class People:
        name=Typed('name',str)
        age=Typed('name',int)
        salary=Typed('name',float)
        def __init__(self,name,age,salary):
            self.name=name
            self.age=age
            self.salary=salary
    
    p1=People(123,18,3333.3)
    p1=People('egon','18',3333.3)
    p1=People('egon',18,3333)
    复制代码

    大刀阔斧之后我们已然能实现功能了,但是问题是,如果我们的类有很多属性,你仍然采用在定义一堆类属性的方式去实现,low,这时候我需要教你一招:独孤九剑

    复制代码
    def decorate(cls):
        print('类的装饰器开始运行啦------>')
        return cls
    
    @decorate #无参:People=decorate(People)
    class People:
        def __init__(self,name,age,salary):
            self.name=name
            self.age=age
            self.salary=salary
    
    p1=People('egon',18,3333.3)
    复制代码
    复制代码
    def typeassert(**kwargs):
        def decorate(cls):
            print('类的装饰器开始运行啦------>',kwargs)
            return cls
        return decorate
    @typeassert(name=str,age=int,salary=float) #有参:1.运行typeassert(...)返回结果是decorate,此时参数都传给kwargs 2.People=decorate(People)
    class People:
        def __init__(self,name,age,salary):
            self.name=name
            self.age=age
            self.salary=salary
    
    p1=People('egon',18,3333.3)
    复制代码

    终极大招

    复制代码
    class Typed:
        def __init__(self,name,expected_type):
            self.name=name
            self.expected_type=expected_type
        def __get__(self, instance, owner):
            print('get--->',instance,owner)
            if instance is None:
                return self
            return instance.__dict__[self.name]
    
        def __set__(self, instance, value):
            print('set--->',instance,value)
            if not isinstance(value,self.expected_type):
                raise TypeError('Expected %s' %str(self.expected_type))
            instance.__dict__[self.name]=value
        def __delete__(self, instance):
            print('delete--->',instance)
            instance.__dict__.pop(self.name)
    
    def typeassert(**kwargs):
        def decorate(cls):
            print('类的装饰器开始运行啦------>',kwargs)
            for name,expected_type in kwargs.items():
                setattr(cls,name,Typed(name,expected_type))
            return cls
        return decorate
    @typeassert(name=str,age=int,salary=float) #有参:1.运行typeassert(...)返回结果是decorate,此时参数都传给kwargs 2.People=decorate(People)
    class People:
        def __init__(self,name,age,salary):
            self.name=name
            self.age=age
            self.salary=salary
    
    print(People.__dict__)
    p1=People('egon',18,3333.3)
    复制代码

    6 描述符总结

    描述符是可以实现大部分python类特性中的底层魔法,包括@classmethod,@staticmethd,@property甚至是__slots__属性

    描述父是很多高级库和框架的重要工具之一,描述符通常是使用到装饰器或者元类的大型框架中的一个组件.

    7 利用描述符原理完成一个自定制@property,实现延迟计算(本质就是把一个函数属性利用装饰器原理做成一个描述符:类的属性字典中函数名为key,value为描述符类产生的对象)

    复制代码
    class Room:
        def __init__(self,name,width,length):
            self.name=name
            self.width=width
            self.length=length
    
        @property
        def area(self):
            return self.width * self.length
    
    r1=Room('alex',1,1)
    print(r1.area)
    复制代码
    复制代码
    class Lazyproperty:
        def __init__(self,func):
            self.func=func
        def __get__(self, instance, owner):
            print('这是我们自己定制的静态属性,r1.area实际是要执行r1.area()')
            if instance is None:
                return self
            return self.func(instance) #此时你应该明白,到底是谁在为你做自动传递self的事情
    
    class Room:
        def __init__(self,name,width,length):
            self.name=name
            self.width=width
            self.length=length
    
        @Lazyproperty #area=Lazyproperty(area) 相当于定义了一个类属性,即描述符
        def area(self):
            return self.width * self.length
    
    r1=Room('alex',1,1)
    print(r1.area)
    复制代码
    复制代码
    class Lazyproperty:
        def __init__(self,func):
            self.func=func
        def __get__(self, instance, owner):
            print('这是我们自己定制的静态属性,r1.area实际是要执行r1.area()')
            if instance is None:
                return self
            else:
                print('--->')
                value=self.func(instance)
                setattr(instance,self.func.__name__,value) #计算一次就缓存到实例的属性字典中
                return value
    
    class Room:
        def __init__(self,name,width,length):
            self.name=name
            self.width=width
            self.length=length
    
        @Lazyproperty #area=Lazyproperty(area) 相当于'定义了一个类属性,即描述符'
        def area(self):
            return self.width * self.length
    
    r1=Room('alex',1,1)
    print(r1.area) #先从自己的属性字典找,没有再去类的中找,然后出发了area的__get__方法
    print(r1.area) #先从自己的属性字典找,找到了,是上次计算的结果,这样就不用每执行一次都去计算
    复制代码
    复制代码
    #缓存不起来了
    
    class Lazyproperty:
        def __init__(self,func):
            self.func=func
        def __get__(self, instance, owner):
            print('这是我们自己定制的静态属性,r1.area实际是要执行r1.area()')
            if instance is None:
                return self
            else:
                value=self.func(instance)
                instance.__dict__[self.func.__name__]=value
                return value
            # return self.func(instance) #此时你应该明白,到底是谁在为你做自动传递self的事情
        def __set__(self, instance, value):
            print('hahahahahah')
    
    class Room:
        def __init__(self,name,width,length):
            self.name=name
            self.width=width
            self.length=length
    
        @Lazyproperty #area=Lazyproperty(area) 相当于定义了一个类属性,即描述符
        def area(self):
            return self.width * self.length
    
    print(Room.__dict__)
    r1=Room('alex',1,1)
    print(r1.area)
    print(r1.area) 
    print(r1.area) 
    print(r1.area) #缓存功能失效,每次都去找描述符了,为何,因为描述符实现了set方法,它由非数据描述符变成了数据描述符,数据描述符比实例属性有更高的优先级,因而所有的属性操作都去找描述符了
    复制代码
     

    8 利用描述符原理完成一个自定制@classmethod

    复制代码
    class ClassMethod:
        def __init__(self,func):
            self.func=func
    
        def __get__(self, instance, owner): #类来调用,instance为None,owner为类本身,实例来调用,instance为实例,owner为类本身,
            def feedback():
                print('在这里可以加功能啊...')
                return self.func(owner)
            return feedback
    
    class People:
        name='linhaifeng'
        @ClassMethod # say_hi=ClassMethod(say_hi)
        def say_hi(cls):
            print('你好啊,帅哥 %s' %cls.name)
    
    People.say_hi()
    
    p1=People()
    p1.say_hi()
    #疑问,类方法如果有参数呢,好说,好说
    
    class ClassMethod:
        def __init__(self,func):
            self.func=func
    
        def __get__(self, instance, owner): #类来调用,instance为None,owner为类本身,实例来调用,instance为实例,owner为类本身,
            def feedback(*args,**kwargs):
                print('在这里可以加功能啊...')
                return self.func(owner,*args,**kwargs)
            return feedback
    
    class People:
        name='linhaifeng'
        @ClassMethod # say_hi=ClassMethod(say_hi)
        def say_hi(cls,msg):
            print('你好啊,帅哥 %s %s' %(cls.name,msg))
    
    People.say_hi('你是那偷心的贼')
    
    p1=People()
    p1.say_hi('你是那偷心的贼')
    复制代码

    9 利用描述符原理完成一个自定制的@staticmethod

    复制代码
    class StaticMethod:
        def __init__(self,func):
            self.func=func
    
        def __get__(self, instance, owner): #类来调用,instance为None,owner为类本身,实例来调用,instance为实例,owner为类本身,
            def feedback(*args,**kwargs):
                print('在这里可以加功能啊...')
                return self.func(*args,**kwargs)
            return feedback
    
    class People:
        @StaticMethod# say_hi=StaticMethod(say_hi)
        def say_hi(x,y,z):
            print('------>',x,y,z)
    
    People.say_hi(1,2,3)
    
    p1=People()
    p1.say_hi(4,5,6)
    复制代码
  • 相关阅读:
    大二实习使用的技术汇总(下)
    【JSP】JSTL使用core标签总结(不断更新中)
    凸包---HDU 2202
    poj
    [MFC]MFC中OnDraw与OnPaint的区别
    PHP 自动生成导航网址的最佳方法 v20130826
    汉语-词语-调料:百科
    汉语-词语-味觉:百科
    汉语-词语-本源:百科
    un-人物-企业家-迈纳·基思:百科
  • 原文地址:https://www.cnblogs.com/Manuel/p/12870190.html
Copyright © 2011-2022 走看看