zoukankan      html  css  js  c++  java
  • 机器学习实战读书笔记(四)基于概率论的分类方法:朴素贝叶斯

    4.1 基于贝叶斯决策理论的分类方法

      朴素贝叶斯

      优点:在数据较少的情况下仍然有效,可以处理多类别问题

      缺点:对于输入数据的准备方式较为敏感

      适用数据类型:标称型数据

      贝叶斯决策理论的核心思想:选择具有最高概率的决策。

    4.2 条件概率

    4.3 使用条件概率来分类

    4.4 使用朴素贝叶斯进行文档分类

      朴素贝叶斯的一般过程:

      1.收集数据

      2.准备数据

      3.分析数据

      4.训练算法

      5.测试算法

      6.使用算法

      朴素贝叶斯分类器中的另一个假设是,每个特征同等重要。

    4.5 使用Python进行文本分类

    4.5.1 准备数据:从文本中构建词向量

      建立bayes.py文件

    def loadDataSet():
        postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                     ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                     ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                     ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                     ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                     ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
        classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
        return postingList,classVec
                     
    def createVocabList(dataSet): 
        vocabSet = set([])  #create empty set
        for document in dataSet:
            vocabSet = vocabSet | set(document) #union of the two sets
        return list(vocabSet)
    
    def setOfWords2Vec(vocabList, inputSet):
        returnVec = [0]*len(vocabList)
        for word in inputSet:
            if word in vocabList:
                returnVec[vocabList.index(word)] = 1
            else: print "the word: %s is not in my Vocabulary!" % word
        return returnVec
    import bayes
    listOPosts,listClasses=bayes.loadDataSet() #
    myVocabList=bayes.createVocabList(listOPosts)
    bayes.setOfWords2Vec(myVocabList,listOPosts[0])
    bayes.setOfWords2Vec(myVocabList,listOPosts[3])

    4.5.2 训练算法,从词向量计算概率

      改写贝叶斯,使用以下公式:

      

      w为向量,p(w|ci)可以展开为p(w0,w1...wN|ci),假设所有词相互独立 ,那么该假设也称作条件独立性假设,这表示可以使用p(w0|ci)p(w1|ci)...p(wn|ci)计算上述概率。

      该函数伪代码如下:

      计算每个类别中的文档数目

      对每篇训练文档:

        对每个类别:

          如果词条出现在文档中->增加该词条的计数值

          增加所有词条的计数值

        对每个类别:

          对每个词条:

            将该词条的数目除以总词条数目得到条件概率

        返回每个类别的条件概率  

    def trainNB0(trainMatrix,trainCategory):
        numTrainDocs = len(trainMatrix)
        numWords = len(trainMatrix[0])
        pAbusive = sum(trainCategory)/float(numTrainDocs)
        p0Num = zeros(numWords); p1Num = zeros(numWords)      #change to ones() 
        p0Denom = 0.0; p1Denom = 0.0                        #change to 2.0
        for i in range(numTrainDocs):
            if trainCategory[i] == 1:
                p1Num += trainMatrix[i]
                p1Denom += sum(trainMatrix[i])
            else:
                p0Num += trainMatrix[i]
                p0Denom += sum(trainMatrix[i])
        p1Vect = p1Num/p1Denom          #change to log()
        p0Vect = p0Num/p0Denom          #change to log()
        return p0Vect,p1Vect,pAbusive
    trainMat=[]
    for postinDoc in listOPosts:
        trainMat.append(bayes.setOfWords2Vec(myVocabList,postinDoc))
    p0V,p1V,pAb=bayes.trainNB0(trainMat,listClasses)

    4.5.3 测试算法:根据现实情况修改分类器

      利用贝叶斯分类器对文档进行分类时,要计算多个概率的乘积以获得文档属于某个类别的概率,即计算p(w0|1)p(w1|1)...,如果其中一个概率值为0,那么最后乘积也为0。为降低这种影响,可以将所有词的出现数初始化为1,并将分母初始化为2.

      修改TrainNB0()  

    def trainNB0(trainMatrix,trainCategory):
        numTrainDocs = len(trainMatrix)
        numWords = len(trainMatrix[0])
        pAbusive = sum(trainCategory)/float(numTrainDocs)
        p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones() 
        p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
        for i in range(numTrainDocs):
            if trainCategory[i] == 1:
                p1Num += trainMatrix[i]
                p1Denom += sum(trainMatrix[i])
            else:
                p0Num += trainMatrix[i]
                p0Denom += sum(trainMatrix[i])
        p1Vect = p1Num/p1Denom          #change to log()
        p0Vect = p0Num/p0Denom          #change to log()
        return p0Vect,p1Vect,pAbusive

      另一个遇到的问题是下溢出,这是由于太多很小的数相乘造成的。当计算p(w0|1)p(w1|1)...时,由于大部分因子都很小,所以程序会下溢出或得到不正确的答案。一种解决办法是对乘积取自然对数。在代数中有ln(a*b)=ln(a)+ln(b),于是通过求对数可以避免下溢出或者浮点数舍入导致的错误。同时,采用自然对数进行处理不会有任何损失。因此,修改TrainNB0

    def trainNB0(trainMatrix,trainCategory):
        numTrainDocs = len(trainMatrix)
        numWords = len(trainMatrix[0])
        pAbusive = sum(trainCategory)/float(numTrainDocs)
        p0Num = ones(numWords); p1Num = ones(numWords)      #change to ones() 
        p0Denom = 2.0; p1Denom = 2.0                        #change to 2.0
        for i in range(numTrainDocs):
            if trainCategory[i] == 1:
                p1Num += trainMatrix[i]
                p1Denom += sum(trainMatrix[i])
            else:
                p0Num += trainMatrix[i]
                p0Denom += sum(trainMatrix[i])
        p1Vect = log(p1Num/p1Denom)          #change to log()
        p0Vect = log(p0Num/p0Denom)          #change to log()
        return p0Vect,p1Vect,pAbusive

      编写分类函数

    def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
        p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #element-wise mult
        p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
        if p1 > p0:
            return 1
        else: 
            return 0
        
    def bagOfWords2VecMN(vocabList, inputSet):
        returnVec = [0]*len(vocabList)
        for word in inputSet:
            if word in vocabList:
                returnVec[vocabList.index(word)] += 1
        return returnVec
    
    def testingNB():
        listOPosts,listClasses = loadDataSet()
        myVocabList = createVocabList(listOPosts)
        trainMat=[]
        for postinDoc in listOPosts:
            trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
        p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
        testEntry = ['love', 'my', 'dalmation']
        thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
        print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
        testEntry = ['stupid', 'garbage']
        thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
        print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)
    bayes.testingNB()

    4.5.4 准备数据:文档词袋模型

      词集模型:每个词出现一次。

      词袋模型:每个词在文档中出现不止一次。

      把setOfWords2Vec()改为bagOfWords2Vec()

    def bagOfWords2VecMN(vocabList, inputSet):
        returnVec = [0]*len(vocabList)
        for word in inputSet:
            if word in vocabList:
                returnVec[vocabList.index(word)] += 1
        return returnVec

    4.6 使用朴素贝叶斯过滤垃圾邮件

      1.收集数据:提供文本文件

      2.准备数据:将文本文件解析成词条向量

      3.分析数据:检查词条确保解析的正确性

      4.训练算法:使用我们之前建立的trainNB0()函数

      5.测试算法:使用classifyNB(),并且构建一个新的测试函数来计算文档集的错误率

      6.使用算法:构建一个完整的程序对一组文档进行分类,将错分的文档输出到屏幕上

    4.6.1 准备数据:切分文本

    4.6.2 测试算法:使用朴素贝叶斯进行交叉验证

      

    def textParse(bigString):    #input is big string, #output is word list
        import re
        listOfTokens = re.split(r'W*', bigString)
        return [tok.lower() for tok in listOfTokens if len(tok) > 2] 
        
    def spamTest():
        docList=[]; classList = []; fullText =[]
        for i in range(1,26):
            wordList = textParse(open('email/spam/%d.txt' % i).read())
            docList.append(wordList)
            fullText.extend(wordList)
            classList.append(1)
            wordList = textParse(open('email/ham/%d.txt' % i).read())
            docList.append(wordList)
            fullText.extend(wordList)
            classList.append(0)
        vocabList = createVocabList(docList)#create vocabulary
        trainingSet = range(50); testSet=[]           #create test set
        for i in range(10):
            randIndex = int(random.uniform(0,len(trainingSet)))
            testSet.append(trainingSet[randIndex])
            del(trainingSet[randIndex])  
        trainMat=[]; trainClasses = []
        for docIndex in trainingSet:#train the classifier (get probs) trainNB0
            trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
            trainClasses.append(classList[docIndex])
        p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
        errorCount = 0
        for docIndex in testSet:        #classify the remaining items
            wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
            if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
                errorCount += 1
                print "classification error",docList[docIndex]
        print 'the error rate is: ',float(errorCount)/len(testSet)
        #return vocabList,fullText

      以上程序,随机选择10篇作测试集,如果全部判对输出错误率0.0,若有错误则输出错分文档的词表。

    4.7 未完成

      

  • 相关阅读:
    PMP工具与技术篇--3.1.1.1 引导式研讨会(人际关系与团队技能)
    PMP工具与技术篇--3.1.1 头脑风暴(数据收集技术)--名义小组技术
    PMP工具与技术篇--3.2.2 相关方映射/表现(数据表现技术)
    py1 python介绍及环境搭建
    各种网络协议(二)
    各种网络协议(一)
    简约响应式
    博客园基本页面设置
    路飞学城web作业总结
    github自动登录
  • 原文地址:https://www.cnblogs.com/MarsMercury/p/5173336.html
Copyright © 2011-2022 走看看