Given any positive integer N, you are supposed to find all of its prime factors, and write them in the format N = p1k1×p2k2×⋯×pmk**m.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range of long int.
Output Specification:
Factor N in the format N =
p1^
k1*
p2^
k2*
…*
p**m^
k**m, where p**i's are prime factors of N in increasing order, and the exponent k**i is the number of p**i -- hence when there is only one p**i, k**i is 1 and must NOT be printed out.
Sample Input:
97532468
Sample Output:
97532468=2^2*11*17*101*1291
思路
- 质因数分解和因数分解类似,只是要先得到质数表,我这里使用的是质数筛法
- (N)的最大是(2^{31}-1),(sqrt{n}approx2^{15.5}),除非这个数本身是质数,不然我们因子判断到(sqrt{n})就好了
代码
#include<bits/stdc++.h>
using namespace std;
struct factor
{
int x; //质数
int n; //阶数
}fac[50];
int primes[100100];
int prime_length = 0;
void gen_prime()
{
int MAXN = 100100;
bool flag[MAXN] = {0};
for(int i=2;i<MAXN;i++)
{
if(!flag[i])
{
primes[prime_length++] = i;
for(int j=i+i;j<MAXN;j+=i) flag[j] = true;
}
}
}//质数筛法
int main()
{
int n, n_copy;
cin >> n;
n_copy = n;
gen_prime();
int last_pos = 0;
if(n == 1) cout << "1=1"; //1是特殊情况
else
{
int sqrt_value = (int)sqrt(n * 1.0); //一个数的因子除了自身不会超过自身的根号n
for(int i=0;primes[i]<sqrt_value && i<prime_length;i++) //不超过根号n,以及不超过质数表的长度
{
while(n % primes[i] == 0)
{
fac[last_pos].x = primes[i];
fac[last_pos].n == 0;
while(n % primes[i] == 0)
{
fac[last_pos].n++;
n /= primes[i];
}
last_pos++;
}
if(n == 1) break;
}
if(n != 1) //说明自己本身就是质数了
{
fac[last_pos].x = n;
fac[last_pos].n = 1;
last_pos++;
}
cout << n_copy << "=";
for(int i=0;i<last_pos;i++)
{
if(fac[i].n != 1)
printf("%d^%d", fac[i].x, fac[i].n);
else
printf("%d", fac[i].x);
if(i != last_pos - 1)
printf("*");
}
}
return 0;
}
引用
https://pintia.cn/problem-sets/994805342720868352/problems/994805415005503488