http://poj.org/problem?id=3714 (题目链接)
现在才搞平面最近点对。。感觉有点尴尬
题意
给出平面上两组点,每组n个,求两组点之间最短距离
Solution1
平面最近点对,分治即可。
将点按横坐标排序,然后每次二分成左边和右边分别计算最小距离,再计算中间的最小距离,这里需要把中间符合条件的点按照纵坐标排序,然后当当前枚举的两点的纵坐标之差大于答案时break,否则会TLE。
代码1
// poj3714 #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<vector> #define inf 2147483640 #define LL long long #define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout); using namespace std; inline LL getint() { LL x=0,f=1;char ch=getchar(); while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();} while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();} return x*f; } const int maxn=1000010; struct point {double x,y;int flag;}p[maxn]; int n,tmp[maxn]; bool cmpx(point a,point b) { return a.x==b.x ? a.y<b.y : a.x<b.x; } bool cmpy(int a,int b) { return p[a].y==p[b].y ? p[a].x<p[b].x : p[a].y<p[b].y; } double dis(point a,point b) { return sqrt((double)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } double solve(int l,int r) { double res=1e60; if (l==r) return res; if (l+1==r) { if (p[l].flag==p[r].flag) return res; return dis(p[l],p[r]); } int mid=(l+r)>>1; res=solve(l,mid); res=min(res,solve(mid+1,r)); int num=0; for (int i=l;i<=r;i++) if (fabs(p[i].x-p[mid].x)<=res) tmp[++num]=i; sort(tmp+1,tmp+num+1,cmpy); for (int i=1;i<=num;i++) for (int j=i+1;j<=num;j++) { if (fabs(p[tmp[i]].y-p[tmp[j]].y)>=res) break; //剪枝 if (p[tmp[i]].flag!=p[tmp[j]].flag) res=min(res,dis(p[tmp[i]],p[tmp[j]])); } return res; } int main() { int T; scanf("%d",&T); while (T--) { scanf("%d",&n); for (int i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y),p[i].flag=0; for (int i=1;i<=n;i++) scanf("%lf%lf",&p[i+n].x,&p[i+n].y),p[i+n].flag=1; n<<=1; sort(p+1,p+1+n,cmpx); printf("%.3f ",solve(1,n)); } return 0; }
Solution2
hzwer上惊现平面最近点对的随机化算法(貌似是随机分块),于是我就蒯了过来,虽然并不知道为什么可以这样写,但是好像很厉害的样子。
上网搜了下,发现期望复杂度是O(n)的。度娘链接
然而= =:
比分治还跑的慢,坑比东西。
代码2
// poj3714 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<cmath> #define LL long long #define inf 2147483640 #define Pi acos(-1.0) #define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout); using namespace std; inline LL getint() { int f,x=0;char ch=getchar(); while (ch<='0' || ch>'9') {if (ch=='-') f=-1;else f=1;ch=getchar();} while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();} return x*f; } const int maxn=1000010; struct point {double x,y;int flag;}p[maxn]; int n,block,m; bool cmp(point a,point b) { return a.x==b.x ? a.y<b.y : a.x<b.x; } point rotate(point a,double x) { return (point){(double)a.x*cos(x)-(double)a.y*sin(x),(double)a.y*cos(x)+(double)a.x*sin(x),a.flag}; } double dis(point a,point b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } int main() { int T;scanf("%d",&T); while (T--) { scanf("%d",&n); for (int i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y),p[i].flag=0; for (int i=1;i<=n;i++) scanf("%lf%lf",&p[i+n].x,&p[i+n].y),p[i+n].flag=1; n<<=1; block=(int)sqrt(n); m=n/block+(n%block!=0); double t=rand()/10000; for (int i=1;i<=n;i++) p[i]=rotate(p[i],t); sort(p+1,p+1+n,cmp); double ans=1e60; for (int i=1;i<=m;i++) { int t1=block*(i-1),t2=min(block*i,n); for (int j=t1;j<=t2;j++) for (int k=t1+1;k<=t2;k++) if (p[j].flag!=p[k].flag) ans=min(ans,dis(p[j],p[k])); } printf("%.3f ",ans); } return 0; }