zoukankan      html  css  js  c++  java
  • 【poj2122】 Optimal Milking

    http://poj.org/problem?id=2112 (题目链接)

    题意

      有K个能挤M头奶牛的挤奶机和C头奶牛,告诉一些挤奶机和奶牛间距离,求最优分配方案使最大距离最小。

    Solution

      先Floyd跑出两两点之间的最短距离,二分答案,最大流。

    细节

      注意距离不超过200是Floyd之前两点之间的距离不超过200。

    代码

    // poj2112
    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    #include<queue>
    #define LL long long
    #define inf 10000000
    #define Pi acos(-1.0)
    #define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
    using namespace std;
    
    const int maxn=500010;
    struct edge {int to,next,w;}e[maxn<<1];
    int head[maxn],d[maxn],f[300][300];
    int n,m,cnt=1,es,et,C,K,M,ans;
    
    void link(int u,int v,int w) {
    	e[++cnt]=(edge){v,head[u],w};head[u]=cnt;
    	e[++cnt]=(edge){u,head[v],w};head[v]=cnt;
    }
    void Floyd() {
    	for (int k=1;k<=K+C;k++)
    		for (int i=1;i<=K+C;i++)
    			for (int j=1;j<=K+C;j++)
    				f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
    }
    bool bfs() {
    	memset(d,-1,sizeof(d));
    	queue<int> q;q.push(es);d[es]=0;
    	while (!q.empty()) {
    		int x=q.front();q.pop();
    		for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]<0) {
    				d[e[i].to]=d[x]+1;
    				q.push(e[i].to);
    			}
    	}
    	return d[et]>0;
    }
    int dfs(int x,int f) {
    	if (x==et || f==0) return f;
    	int w,used=0;
    	for (int i=head[x];i;i=e[i].next) if (e[i].w && d[e[i].to]==d[x]+1) {
    			w=dfs(e[i].to,min(e[i].w,f-used));
    			used+=w;
    			e[i].w-=w;e[i^1].w+=w;
    			if (used==f) return used;
    		}
    	if (!used) d[x]=-1;
    	return used;
    }
    bool Dinic(int mid) {
    	int ans=0;memset(head,0,sizeof(head));
    	cnt=1;
    	for (int i=K+1;i<=K+C;i++) {
    		for (int j=1;j<=K;j++) if (f[i][j]<=mid) link(i,j,1);
    		link(es,i,1);
    	}
    	for (int i=1;i<=K;i++) link(i,et,M);
    	while (bfs()) ans+=dfs(es,inf);
    	return ans==C;
    }
    int main() {
    	scanf("%d%d%d",&K,&C,&M);
    	es=K+C+1;et=es+1;
    	for (int i=1;i<=K+C;i++)
    		for (int j=1;j<=K+C;j++) {
    			scanf("%d",&f[i][j]);
    			if (f[i][j]==0) f[i][j]=inf;
    		}
    	Floyd();
    	int L=0,R=60000,res;
    	while (L<=R) {
    		int mid=(L+R)>>1;
    		if (Dinic(mid)) res=mid,R=mid-1;
    		else L=mid+1;
    	}
    	printf("%d",res);
    	return 0;
    }
    

      

  • 相关阅读:
    常用 SQL 语句使用的总结
    LC 583. Delete Operation for Two Strings
    LC 873. Length of Longest Fibonacci Subsequence
    LC 869. Reordered Power of 2
    LC 900. RLE Iterator
    LC 974. Subarray Sums Divisible by K
    LC 973. K Closest Points to Origin
    LC 975. Odd Even Jump
    LC 901. Online Stock Span
    LC 722. Remove Comments
  • 原文地址:https://www.cnblogs.com/MashiroSky/p/6216663.html
Copyright © 2011-2022 走看看