zoukankan      html  css  js  c++  java
  • HDU 6053 TrickGCD —— 2017 Multi-University Training 2

    TrickGCD

    Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 2523    Accepted Submission(s): 965

    Problem Description
    You are given an array A , and Zhu wants to know there are how many different array B satisfy the following conditions?

    1BiAi
    * For each pair( l , r ) (1lrn) , gcd(bl,bl+1...br)2
     
    Input
    The first line is an integer T(1T10) describe the number of test cases.

    Each test case begins with an integer number n describe the size of array A.

    Then a line contains n numbers describe each element of A

    You can assume that 1n,Ai1e5
     
    Output
    For the kth test case , first output "Case #k: " , then output an integer as answer in a single line . because the answer may be large , so you are only need to output answer mod 1e9+7
     
    Sample Input
    1 4
    4 4 4 4
     
    Sample Output
    Case #1: 17
     
    题目大意:有数组A,根据1<=Bi<=Ai,且对于任意1<=l<=r<=n, gcd(Bl,Bl+1...Br)2 构造B数列
    思路:B的最小值一定不会大于A的最小值,所以gcd(B1,B2,...,Bn)一定不大于A的最小值,那么我们可以求出A的最小值,对gcd为质数的情况求和,利用容斥原理减去重复的情况。在计算重复情况时,发现对于gcd是奇数个质数的乘积时是加,偶数个时是减,与莫比乌斯函数相反,那么就可以借助莫比乌斯函数求和。这里暴力求和会超时,问了学长之后才知道分桶计算可以快很多,涨姿势了。
     
    AC代码:
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 using namespace std;
     5 typedef long long LL;
     6 const int MAXN=1e5+10;
     7 const int MOD=1e9+7; 
     8 LL miu[MAXN],primes[MAXN],tot=0;
     9 bool isprime[MAXN];
    10 int a[MAXN],sum[MAXN];
    11 int maxx=0,minn=MAXN;
    12 void getmiu()
    13 {
    14     memset(isprime, 0, sizeof((isprime)));
    15     miu[1]=1;
    16     for(int i=2;i<MAXN;i++){
    17         if(isprime[i]==false)
    18         {
    19             miu[i]=-1;
    20             primes[++tot]=i;//cout<<'*'<<endl;
    21         }
    22         for(int j=1;j<=tot;j++){
    23             if(i*primes[j]>=MAXN) break;
    24             isprime[i*primes[j]]=1;
    25             if(i%primes[j]==0){
    26                 miu[i*primes[j]]=0;
    27                 break;
    28             }
    29             miu[i*primes[j]]=-miu[i];
    30         }
    31     }
    32     
    33     
    34     for(int i=1;i<MAXN;i++) miu[i]=-miu[i];
    35 }
    36 LL quick_pow(LL a, LL p)
    37 {
    38     int res=1;
    39     while(p)
    40     {
    41         if(p&1) res=a*res%MOD;
    42         a=a*a%MOD;
    43         p>>=1;
    44     }
    45     return res;
    46 }
    47 int solve()
    48 {
    49     LL i,j,k,p;
    50     LL ans=0;
    51     for(int i=2;i<=minn;i++){
    52         if(!miu[i]) continue;
    53         LL res=1;
    54         j=min(i, maxx), k=min((i<<1)-1, maxx);
    55         for(p=1; ;p++)
    56         {
    57             if(sum[k]-sum[j-1])
    58                 res=res*quick_pow(p, sum[k]-sum[j-1])%MOD;
    59             if(k==maxx) break;
    60             j+=i;
    61             k+=i;
    62             if(k>maxx) k=maxx; 
    63         }
    64         ans+=miu[i]*res;
    65         if(ans>MOD) ans-=MOD;
    66         if(ans<0) ans+=MOD;
    67     }
    68     return ans%MOD;
    69     
    70 }
    71 int main()
    72 {
    73     int T,n,t=0;
    74     getmiu();
    75     scanf("%d", &T);
    76     //cout<<'*'<<endl;
    77     while(T--)
    78     {
    79         scanf("%d", &n);
    80         maxx=0,minn=MAXN;
    81         memset(sum, 0, sizeof(sum));
    82         for(int i=0;i<n;i++){
    83             scanf("%d", &a[i]);
    84             sum[a[i]]++;
    85             maxx=max(a[i], maxx);
    86             minn=min(a[i], minn);
    87         }
    88         for(int i=1;i<=maxx;i++) sum[i]+=sum[i-1];
    89         LL res=solve();
    90         printf("Case #%d: %lld
    ", ++t, res);
    91     }
    92 }
  • 相关阅读:
    【项目02】王者荣耀英雄搜索数据结构
    powerdesigner-ER图建模
    H5笔记02
    H5笔记01
    Python for Data Science
    Python for Data Science
    Python for Data Science
    Python for Data Science
    Python for Data Science
    Python for Data Science
  • 原文地址:https://www.cnblogs.com/MasterSpark/p/7266079.html
Copyright © 2011-2022 走看看