zoukankan      html  css  js  c++  java
  • HDU 6069 Counting Divisors —— 2017 Multi-University Training 4

    Counting Divisors

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
    Total Submission(s): 2599    Accepted Submission(s): 959

    Problem Description
    In mathematics, the function d(n) denotes the number of divisors of positive integer n.

    For example, d(12)=6 because 1,2,3,4,6,12 are all 12's divisors.

    In this problem, given l,r and k, your task is to calculate the following thing :

     
    Input
    The first line of the input contains an integer T(1T15), denoting the number of test cases.

    In each test case, there are 3 integers l,r,k(1lr1012,rl106,1k107).
     
    Output
    For each test case, print a single line containing an integer, denoting the answer.
     
    Sample Input
    3
    1 5 1
    1 10 2
    1 100 3
     
    Sample Output
    10
    48
    2302
     
    题目大意:d(i)是 i 的因数个数,让我们求 l<=i<=r 时,d(i^k)之和.
    思路:对一个数n=p1t1*p2t2*...*pntn, pi是n的质因数。则n的因数个数是(t1+1)*(t2+1)*...*(tn-1+1)*(tn+1), 易得i^k的因数个数是(k*t1+1)*(k*t2+1)*...*(k*tn+1),那么接下来就是要对 i 进行质因数分解了。 在打表打出质因数后,分解时对于一个质数P, 在[l , r]区间内所有能整除P的数进行质因数分解,这样能保证不会有多余时间花在搜索质因数上,这种做法类似筛法。具体见代码。
     
    AC代码(标程):
     1 #include<iostream>
     2 #include<cstring>
     3 #include<cstdio>
     4 #include<cmath>
     5 #include<stdio.h>
     6 #define it (p-l) 
     7 using namespace std;
     8 typedef long long LL;
     9 const LL MOD=998244353;
    10 const long long MAXN=1000005;
    11 long long prime[MAXN],tot=0;
    12 bool isPrime[MAXN];    
    13 LL k,num[MAXN],res[MAXN];
    14 void getprime(){
    15     memset(isPrime, true, sizeof(isPrime));
    16     for(int i=2;i<MAXN;i++){
    17         if(isPrime[i]){
    18             prime[++tot]=i;
    19         }
    20         for(int j=1;j<=tot;j++){
    21             if(i*prime[j]>MAXN) break;
    22                 isPrime[i*prime[j]]=false;
    23             if(i%prime[j]==0) break;
    24         }
    25     }
    26     return ;
    27 }
    28 LL cal(LL l, LL r)
    29 {
    30     LL ans=0,tmp,cnt;
    31     for(int i=1;i<=tot;i++)
    32     {
    33         LL p=(l+prime[i]-1)/prime[i]*prime[i];
    34         while(p<=r){
    35             cnt=0;
    36             while(num[it]%prime[i]==0){
    37                 num[it]/=prime[i];
    38                 cnt++;
    39             }
    40             res[it]=res[it]*(k*cnt+1)%MOD;
    41             p+=prime[i];
    42         }
    43     }
    44     for(LL p=l;p<=r;p++){
    45         if(num[it]==1)
    46             ans+=res[it];
    47         else
    48             ans+=res[it]*(k+1);
    49         ans%=MOD;
    50     }
    51     return ans;
    52 }
    53 int main()
    54 {
    55     int T;
    56     LL l,r;
    57     getprime();
    58     scanf("%d", &T);
    59     while(T--)
    60     {
    61         scanf("%lld %lld %lld", &l, &r, &k);
    62         for(LL p=l;p<=r;p++){
    63             res[it]=1;
    64             num[it]=p;
    65         }
    66         LL res=cal(l, r);
    67         printf("%lld
    ", res);
    68     }
    69 }
  • 相关阅读:
    事务隔离级别
    手机摄影之生活拍照技巧
    html.unescape(s)
    正则表达式编译和DOTALL小结
    重试模块==>retrying
    js逆向==>js2py
    mysql索引设计原则
    Django请求与响应
    Linux常用命令
    C++11 auto_ptr 的问题
  • 原文地址:https://www.cnblogs.com/MasterSpark/p/7291193.html
Copyright © 2011-2022 走看看