在( riangle ABC)中,若(dfrac{b}{a}+dfrac{a}{b}=4cos C),(cos (A-B)=dfrac{1}{6}),则(cos C=underline{qquadqquad}).
解析:
法一 由题有$$ cos C=dfrac{a2+b2}{4ab}=dfrac{a2+b2-c^2}{2ab}.$$因此(a^2+b^2=2c^2).于是在$ riangle ABC $中应用正弦定理可得
[dfrac{c^2}{sin^2C}=dfrac{a^2}{sin^2A}=dfrac{b^2}{sin^2B}=dfrac{a^2+b^2}{sin^2A+sin^2B}.$$即有
]
egin{split}
dfrac{1}{sin^2C}& =dfrac{4}{1-cos 2A+1-cos 2B}
&=dfrac{2}{1-cos (A+B)cos(A-B)}
&=dfrac{2}{1+dfrac{1}{6}cos C}.
end{split}$$
解得(cos C=dfrac{2}{3})或(-dfrac{3}{4}),显然(cos C>0),因此(cos C=dfrac{2}{3}).
法二 由题有$$ cos C=dfrac{a2+b2}{4ab}=dfrac{a2+b2-c2}{2ab}=dfrac{c2}{2ab}=dfrac{sin^2C}{2sin A sin B}.$$
又因为$$ dfrac{1}{6}+cos C=cos (A-B)-cosleft(A+B
ight)=2sin Asin B.$$
两式联立消去(sin Asin B)可得关于(cos C)的方程,解得(cos C=dfrac{2}{3})或(-dfrac34),显然(cos C>0),因此(cos C=dfrac{2}{3}).