zoukankan      html  css  js  c++  java
  • 每日一题_191219

    若数列({a_n})满足(a_{n+1}=3a_n+2),(ninmathbb{N}^ast),且(a_1=2).
    ((1)) 求数列({a_n})的通项公式;
    ((2))(b_n=dfrac{1}{a_n^2}+dfrac{1}{a_n}),数列({b_n})的前(n)项和为(S_n),求证:(forall ninmathbb{N}^ast,S_n<dfrac{31}{32}).

    解析:
    ((1)) 由题$$
    a_{n+1}+1=3left(a_n+1 ight).$$所以$$
    a_n=3n-1,ninmathbb{N}ast.$$
    ((2)) 结合((1))可知(b_n=dfrac{3^n}{left(3^n-1 ight)^2}),所以$$
    forall ngeqslant 2,b_n=dfrac{3{n-1}}{left(3n-1 ight)left(3{n-1}-dfrac{1}{3} ight)}<dfrac{1}{2}left(dfrac{1}{3{n-1}-1}-dfrac{1}{3^n-1} ight).$$
    从而
    $$
    egin{split}
    S_n&leqslant b_1+b_2+sum_{k=3}^{n}left[dfrac{1}{2}left( dfrac{1}{3{k-1}-1}-dfrac{1}{3k-1} ight) ight]
    &=dfrac{3}{4}+dfrac{9}{64}+dfrac{1}{16}-dfrac{1}{2}cdotdfrac{1}{3^n-1}
    &<dfrac{61}{64}<dfrac{31}{32}.
    end{split}
    $$
    证毕.

  • 相关阅读:
    commons
    Dozer数据对象转换神器
    xstream
    javassist
    JAVA设计模式之单例模式
    单例模式
    OC_自动引用计数器_0x04
    OC_自动引用计数器_0x03
    OC_自动引用计数器_0x02
    OC_自动引用计数器_0x01
  • 原文地址:https://www.cnblogs.com/Math521/p/12010857.html
Copyright © 2011-2022 走看看