zoukankan      html  css  js  c++  java
  • HDU 2586 + HDU 4912 最近公共祖先

    先给个LCA模板

    HDU 1330(LCA模板)

    #include <cstdio>
    #include <cstring>
    #define N 40005
    struct Edge{
        int x,y,d,ne;
    };
    Edge e[N*2],e2[N*2];
    int be[N],be2[N],all,all2,n,m;
    bool vis[N];
    int fa[N];
    int ancestor[N][3];
    int dis[N];
    
    void add(int x, int y, int d, Edge e[], int be[], int &all)
    {
        e[all].y=y;e[all].x=x;e[all].d=d;
        e[all].ne=be[x];
        be[x]=all++;
    
        e[all].y=x;e[all].x=y;e[all].d=d;
        e[all].ne=be[y];
        be[y]=all++;
    }
    
    void init()
    {
        all=all2=0;
        memset(be,-1,sizeof(be));
        memset(be2,-1,sizeof(be2));
        memset(vis,0,sizeof(vis));
        for(int i=0; i<=n; i++)
            fa[i]=i;
    }
    
    int find(int x)
    {
        if(fa[x]!=x) fa[x]=find(fa[x]);
        return fa[x];
    }
    
    void tarjan(int u)
    {
        vis[u]=1;
        for(int i=be2[u]; i!=-1; i=e2[i].ne)
            if(vis[e2[i].y])
                ancestor[e2[i].d][2]=find(e2[i].y);
    
        for(int i=be[u]; i!=-1; i=e[i].ne)
            if(!vis[e[i].y])
            {
                dis[e[i].y]=dis[u]+e[i].d;
                tarjan(e[i].y);
                fa[e[i].y]=u;
            }
    }
    
    int main()
    {
        int tt;
        scanf("%d",&tt);
        while(tt--)
        {
            int x,y,d;
            scanf("%d%d",&n,&m);
            init();
            for(int i=0; i<n-1; i++)
            {
                scanf("%d%d%d",&x,&y,&d);
                add(x,y,d,e,be,all);
            }
            for(int i=0; i<m; i++)
            {
                scanf("%d%d",&x,&y);
                add(x,y,i,e2,be2,all2);
                ancestor[i][0]=x;
                ancestor[i][1]=y;
            }
            dis[1]=0;
            tarjan(1);//从根节点开始
            for(int i=0; i<m; i++)
                printf("%d
    ",dis[ancestor[i][0]]+dis[ancestor[i][1]]-2*dis[ancestor[i][2]]);
        }
        return 0;
    }
    View Code

     

    HDU 4912

    Paths on the tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 428    Accepted Submission(s): 128


    Problem Description
    bobo has a tree, whose vertices are conveniently labeled by 1,2,…,n.

    There are m paths on the tree. bobo would like to pick some paths while any two paths do not share common vertices.

    Find the maximum number of paths bobo can pick.
     
    Input
    The input consists of several tests. For each tests:

    The first line contains n,m (1≤n,m≤105). Each of the following (n - 1) lines contain 2 integers ai,bi denoting an edge between vertices ai and bi (1≤ai,bi≤n). Each of the following m lines contain 2 integers ui,vi denoting a path between vertices ui and vi (1≤ui,vi≤n).
     
    Output
    For each tests:

    A single integer, the maximum number of paths.
     
    Sample Input
    3 2 1 2 1 3 1 2 1 3 7 3 1 2 1 3 2 4 2 5 3 6 3 7 2 3 4 5 6 7
     
    Sample Output
    1 2
     

    贪心法,找出给定路径左右节点的最近公共祖先,按其最近公共祖先的深度从大到小插入,每次插入将其子树标记,之后若路径节点若已访问则判不可行,否则ans+1

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <vector>
    #define max(x,y) ((x)>(y)?(x):(y))
    #define NN 200002 // number of house
    using namespace std;
    
    int be[NN],all,ans;
    bool vis2[NN],vis3[NN];
    
    typedef struct node{
        int v;
        int d;
        struct node *nxt;
    }NODE;
    
    struct edge{
        int u,v,ne;
    }e[NN];
    
    NODE *Link1[NN];
    NODE edg1[NN * 2]; 
    
    NODE *Link2[NN];
    NODE edg2[NN * 2]; 
    
    int idx1, idx2, N, M;
    int res[NN][3]; 
    int fat[NN];
    int vis[NN];
    int dis[NN];
    
    void Add(int u, int v, int d, NODE edg[], NODE *Link[], int &idx){
        edg[idx].v = v;
        edg[idx].d = d;
        edg[idx].nxt = Link[u];
        Link[u] = edg + idx++;
    
        edg[idx].v = u;
        edg[idx].d = d;
        edg[idx].nxt = Link[v];
        Link[v] = edg + idx++;
    }
    
    int find(int x){ 
        if(x != fat[x]){
            return fat[x] = find(fat[x]);
        }
        return x;
    }
    
    void Tarjan(int u){
        vis[u] = 1;
        fat[u] = u;
    
        for (NODE *p = Link2[u]; p; p = p->nxt){
            if(vis[p->v]){
                res[p->d][2] = find(p->v); 
            }
        }
    
        for (NODE *p = Link1[u]; p; p = p->nxt){
            if(!vis[p->v]){
                dis[p->v] = dis[u] + p->d;
                Tarjan(p->v);
                fat[p->v] = u;
            }
        }
    }
    
    void add(int fa,int x,int y)
    {
        ++all;
        e[all].u=x;
        e[all].v=y;
        e[all].ne=be[fa];
        be[fa]=all;
    }
    
    void color(int u)
    {
        for (NODE *p = Link1[u]; p; p = p->nxt)
            if(vis3[p->v] && !vis2[p->v])
            {
                vis2[p->v]=1;
                color(p->v);
            }
    }
    
    void dfs(int u)
    {
        vis[u]=1;
        for (NODE *p = Link1[u]; p; p = p->nxt)
            if(!vis[p->v])    dfs(p->v);
    
        for (int i=be[u]; i!=-1; i=e[i].ne)
            if(!vis2[e[i].u] && !vis2[e[i].v])
            {
                vis2[u]=1;
                ans++;
                color(u);
            }
        vis3[u]=1;
    
    }
    
    int main() {
        int T, i, u, v, d;
        while(scanf("%d%d", &N, &M)!=EOF)
        {
            idx1 = 0;
            memset(Link1, 0, sizeof(Link1));
            for (i = 1; i < N; i++){
                scanf("%d%d", &u, &v);
                d=0;
                Add(u, v, d, edg1, Link1, idx1);
            }
    
            idx2 = 0;
            memset(Link2, 0, sizeof(Link2));
            for (i = 1; i <= M; i++){
                scanf("%d%d", &u, &v);
                Add(u, v, i, edg2, Link2, idx2);
                res[i][0] = u;
                res[i][1] = v;
            }
    
            memset(vis, 0, sizeof(vis));
            dis[1] = 0;
            Tarjan(1);
    
            all=0;
            memset(be,-1,sizeof(be));
            memset(vis,0,sizeof(vis));
            memset(vis2,0,sizeof(vis2));
            memset(vis3,0,sizeof(vis3));
            for(int i=1;i<=M; i++)
                add(res[i][2],res[i][0],res[i][1]);
            for(int i=1; i<=N; i++)
                fat[i]=i;
            ans=0;
            dfs(1);
            printf("%d
    ",ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Visual Studio 2010单元测试(2)--运行测试并查看代码覆盖率
    实用设计模式之观察者模式
    并查集简单题pku1611
    HDU 4534 郑厂长系列故事——新闻净化(AC自动机+DP)
    求 小于 n 的 质数 几种方式
    MySQL数据库高并发优化配置
    MySQL 对于千万级的大表要怎么优化?
    mysql数据库优化总结
    php 正则表达式怎么匹配标签里面的style?
    MySql数据库优化可以从哪几个方面进行?
  • 原文地址:https://www.cnblogs.com/Mathics/p/3895389.html
Copyright © 2011-2022 走看看