zoukankan      html  css  js  c++  java
  • 【BZOJ1494】生成树计数(NOI2007)-连通性状压DP+矩阵加速

    测试地址:生成树计数
    做法:本题需要用到连通性状压DP+矩阵加速。
    假设图是从左到右不断添加点的,那么每添加一个点,影响到的只有最后k个点的连通性,所以不难想到以最后k个点的连通性作为状态进行DP。所谓的连通性,就是将这k个点分为若干个集合,相同集合内的点就是连通的,不同集合内的点就不连通,不难发现合法的状态数只有B(k),即第k个Bell数,而Bell数就是k个元素划分集合的方案数,打表可知B(5)=52
    那么我们怎么把这些状态表示出来呢?一般我们为了确保相同的连通情况不重复出现,我们用最小表示法表示一个集合划分方案,即从1n遍历每个点,如果它没有被编过号,那么就将它和所有和它相连的点编上同一个号,就这样继续下去。容易发现这种状态可以用一个k进制数表示,那么给状态编码和解码的方法就都有了。
    接下来我们来想怎么DP。注意到,每加入一个点,我们要做出的决策是:在这个点向左连接的k条边中选择若干条边(可以不选)连接,每种决策都会转移到新的最后k个点的连通状态。我们显然可以暴力模拟加入边的过程,存储一个连通状态可以转移到哪些连通状态。
    进行决策的时候有以下几个限制:
    一是如果两个点已经连通,那么它们不能通过新的点再相连,这是为了维护树的无环性。
    二是添加新点之前,最后k个点中的最前面的点要么跟其它的k1个点连通,要么就必须跟新点连通,这是为了维护树的连通性。
    在注意上面两点的情况下,直接DP就好了。注意到DP中每一步的转移都是一样的,显然可以用矩阵快速幂加速这个过程,那么总的时间复杂度就是O(B(k)3logn),可以通过此题。
    以下是本人代码:

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const ll mod=65521;
    int k,cnt[10]={0},st[50010],tot=0;
    int pos[50010],nowst[10],nxt[10],a[10];
    ll n,full[10],first[50010];
    bool vis[10],visst[10];
    struct matrix
    {
        ll mat[60][60];
    }M;
    
    void find_state(int step,int last,int num)
    {
        if (step==k)
        {
            st[++tot]=num;
            pos[num]=tot;
            first[tot]=1;
            for(int i=1;i<=k;i++)
                first[tot]*=full[cnt[i]];
            return;
        }
        for(int i=1;i<=last;i++)
        {
            cnt[i]++;
            if (i==last) find_state(step+1,last+1,num*6+i-1);
            else find_state(step+1,last,num*6+i-1);
            cnt[i]--;
        }
    }
    
    void init()
    {
        scanf("%d%lld",&k,&n);
        full[0]=1;
        for(int i=1;i<=k;i++)
        {
            full[i]=1;
            for(int j=1;j<=i-2;j++)
                full[i]*=i;
        }
        find_state(0,1,0);
    }
    
    int encode()
    {
        int num=0;
        for(int i=1;i<=k;i++)
            num=num*6+nxt[i]-1;
        return num;
    }
    
    void decode(int num)
    {
        for(int i=k;i>=1;i--)
        {
            nowst[i]=num%6+1;
            num/=6;
        }
    }
    
    void pre_dp()
    {
        memset(M.mat,0,sizeof(M.mat));
        for(int i=1;i<=tot;i++)
        {
            decode(st[i]);
    
            bool flag=0;
            int cnt=0;
            for(int j=1;j<=k;j++)
            {
                if (j>1&&nowst[j]==1) flag=1;
                cnt=max(cnt,nowst[j]);
            }
    
            for(int j=0;j<(1<<k);j++)
            {
                if (!flag&&!(j&1)) continue;
    
                int mn=cnt+1;
                memset(visst,0,sizeof(visst));
                memset(vis,0,sizeof(vis));
                for(int p=0;p<k;p++)
                {
                    vis[p]=(j&(1<<p));
                    visst[nowst[p+1]]=visst[nowst[p+1]]|(j&(1<<p));
                    if (vis[p]) mn=min(mn,nowst[p+1]);
                }
    
                bool nowflag=0;
                for(int p=1;p<=k;p++)
                {
                    for(int q=1;q<=k;q++)
                        if (p!=q&&vis[p-1]&&vis[q-1]&&nowst[p]==nowst[q])
                            {nowflag=1;break;}
                    if (nowflag) break;
                }
                if (nowflag) continue;
    
                nxt[k]=mn;
                for(int p=1;p<k;p++)
                {
                    nxt[p]=nowst[p+1];
                    if (visst[nowst[p+1]]) nxt[p]=mn;
                }
                int nxtcnt=0;
                memset(a,0,sizeof(a));
                for(int p=1;p<=k;p++)
                {
                    if (!a[nxt[p]]) a[nxt[p]]=++nxtcnt;
                    nxt[p]=a[nxt[p]];
                }
    
                int nx=encode();
                M.mat[pos[nx]][i]=(M.mat[pos[nx]][i]+1)%mod;
            }
        }
    }
    
    void mult(matrix A,matrix B,matrix &C)
    {
        memset(C.mat,0,sizeof(C.mat));
        for(int i=1;i<=tot;i++)
            for(int j=1;j<=tot;j++)
                for(int k=1;k<=tot;k++)
                    C.mat[i][j]=(C.mat[i][j]+A.mat[i][k]*B.mat[k][j])%mod;
    }
    
    void dp(ll n)
    {
        matrix S;
        memset(S.mat,0,sizeof(S.mat));
        for(int i=1;i<=tot;i++)
            S.mat[i][i]=1;
        while(n)
        {
            if (n&1) mult(M,S,S);
            mult(M,M,M);n>>=1;
        }
        ll ans=0;
        for(int i=1;i<=tot;i++)
            ans=(ans+S.mat[1][i]*first[i])%mod;
        printf("%lld",ans);
    }
    
    int main()
    {
        init();
        pre_dp();
        dp(n-(ll)k);
    
        return 0;
    }
  • 相关阅读:
    SAM4E单片机之旅——2、LED闪烁之轮询定时器
    SAM4E单片机之旅——1、LED闪烁之空循环
    C#使用WinAPI 修改电源设置,临时禁止笔记本合上盖子时睡眠
    阻止系统自动睡眠的小软件,附C#制作过程
    Python3做采集
    判断浏览器类型
    任意几个数求和
    常见Z纯CSS小样式合集(三角形)
    数据脱敏项目中遇见的问题
    点击左侧跳到右侧
  • 原文地址:https://www.cnblogs.com/Maxwei-wzj/p/9793395.html
Copyright © 2011-2022 走看看