zoukankan      html  css  js  c++  java
  • 【BZOJ3534】重建(SDOI2014)-矩阵树定理

    测试地址:重建
    做法:本题需要用到矩阵树定理。
    这两天去学(背)了矩阵树定理,主要就是将度数矩阵D减去邻接矩阵A得到基尔霍夫矩阵,然后将矩阵最后一行和最后一列去掉,剩下的部分求个行列式值,那么这个行列式的值就是这个图的生成树个数。根据行列式的性质,将一行乘上同一个数加到另一行上,所得到的行列式值不变,所以我们可以用类似高斯消元的方法把行列式消成上三角行列式。而上三角行列式的值等于其主对角线上元素的乘积,那么直接运算即可。
    矩阵树定理的一个扩展就是,如果把度数换成和该点相连的边权和,把邻接矩阵中的Aij改成点i到点j的边的边权和,那么按照上面计算出来的就是图的所有生成树边权积的和。如果不理解上面那句话,上面计算出来的实际上是下面一个东西:
    T is tree(u,v)TAuv
    回到这题本身,我们发现要求的是:
    ans=T is tree(u,v)TAuv(u,v)T(1Auv)
    这就不能直接用上面的方法求了,但是我们可以将边权转化,使得能用上面的方法求出一部分。我们把(u,v)(1Auv)提出来,得:
    ans=(u,v)(1Auv)T is tree(u,v)TAuv1Auv
    那么我们把边权转化成Auv1Auv,就可以用矩阵树定理算出后面的和式了,时间复杂度为O(n3)
    为了防止出现奇怪的情况,当1Auv<eps时,我们令Auv=eps,这样就不会出现分母为0等鬼畜情况了。
    以下是本人代码:

    #include <bits/stdc++.h>
    using namespace std;
    const long double eps=1e-6;
    int n;
    long double p[55][55],tot=1.0;
    
    void gauss()
    {
        n--;
        for(int i=1;i<=n;i++)
        {
            int now=i;
            for(int j=i+1;j<=n;j++)
                if (fabs(p[j][i])>fabs(p[now][i])) now=j;
            for(int j=1;j<=n;j++)
                swap(p[i][j],p[now][j]);
            if (fabs(p[i][i])<eps) {p[i][i]=0.0;return;}
            for(int j=i+1;j<=n;j++)
            {
                for(int k=i+1;k<=n;k++)
                    p[j][k]+=-p[j][i]*p[i][k]/p[i][i];
                p[j][i]=0.0;
            }
        }
    }
    
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
            {
                scanf("%Lf",&p[i][j]);
                if (i==j) continue;
                if (p[i][j]+eps>1.0) p[i][j]-=eps;
                if (i<j) tot*=1-p[i][j];
                p[i][j]/=p[i][j]-1;
            }
        for(int i=1;i<=n;i++)
        {
            p[i][i]=0.0;
            for(int j=1;j<=n;j++)
                if (i!=j) p[i][i]-=p[i][j];
        }
    
        gauss();
        long double ans=1.0;
        for(int i=1;i<=n;i++)
            ans*=p[i][i];
        ans*=tot;
        printf("%.6Lf",ans);
    
        return 0;
    }
  • 相关阅读:
    一根网线实现双机互联共享文件
    预编译指令与宏定义
    程序的编译链接过程
    windows消息机制(MFC)
    【SpringBoot】SpringBoot Servlet容器(十一)
    【SpringBoot】SpringBoot Servlet三大组件 Servlet、Filter、Listener(十)
    【SpringBoot】SpringBoot 错误处理机制(九)
    【SpringBoot】SpringBoot 国际化(七)
    【SpringBoot】SpringBoot与Thymeleaf模版(六)
    【SpringBoot】SpringBoot与SpringMVC自动配置及静态资源(五)
  • 原文地址:https://www.cnblogs.com/Maxwei-wzj/p/9793502.html
Copyright © 2011-2022 走看看