zoukankan      html  css  js  c++  java
  • 2019 ICPC Asia Yinchuan Regional

    B. So Easy || 思维

    行列之差,注意边界处理

    #include <bits/stdc++.h>
    using namespace std;
    
    int a[1111][1111];
    
    int main()
    {
        int n;
        cin >> n;
        int idx, idy;
        for(int i = 1; i <= n; ++i)
        {
            for(int j = 1; j <= n; ++j)
            {
                scanf("%d", &a[i][j]);
                if(a[i][j] == -1)
                {
                    idx = i;
                    idy = j;
                }
            }
        }
        //cout << idx << ' ' << idy << endl;
        if(idx == n)
        {
            if(idy == n)
                cout << a[idx-1][idy] - a[idx-1][idy-1] + a[idx][idy-1] << endl;
            else cout << a[idx-1][idy] - a[idx-1][idy+1] + a[idx][idy+1] << endl;
        }
        else
        {
            if(idy == n)
                cout << a[idx][idy-1] - a[idx+1][idy-1] + a[idx+1][idy] << endl;
            else cout << a[idx][idy+1] - a[idx+1][idy+1] + a[idx+1][idy] << endl;
        }
    
    }

    G. Pot!! || 线段树

    维护2、3、5、7四棵线段树,由于代码复用,所以在函数中添加int* tree和int* lazy

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 1e5 + 7;
    
    int a[maxn], tr2[maxn<<2], tr3[maxn<<2], tr5[maxn<<2], tr7[maxn<<2], lz2[maxn<<2], lz3[maxn<<2], lz5[maxn<<2], lz7[maxn<<2];
    void build(int* tree, int node, int l, int r)
    {
        if(l == r)
        {
            tree[node] = a[l];
            return;
        }
        int mid = (l + r) / 2;
        build(tree, node * 2, l, mid);
        build(tree, node * 2 + 1, mid + 1, r);
        tree[node] = max(tree[node*2], tree[node*2+1]);
    }
    
    void push_down(int* tree, int* lazy, int node)
    {
        if(lazy[node])
        {
            tree[2*node] += lazy[node];
            tree[2*node+1] += lazy[node];
            lazy[2*node] += lazy[node];
            lazy[2*node+1] += lazy[node];
            lazy[node] = 0;
        }
    }
    
    void update(int* tree, int* lazy, int node, int l, int r, int x, int y, int c)
    {
        if(x <= l && y >= r)
        {
            tree[node] += c;
            lazy[node] += c;
            return;
        }
    
        push_down(tree, lazy, node);
    
        int mid = (l + r) / 2;
        if(x <= mid) update(tree, lazy, node * 2, l, mid, x, y, c);
        if(y > mid) update(tree, lazy, node * 2 + 1, mid + 1, r, x, y, c);
        tree[node] = max(tree[node*2], tree[node*2 + 1]);
    }
    
    int query(int* tree, int* lazy, int node, int l, int r, int x, int y)
    {
        if(x <= l && y >= r) return tree[node];
    
        push_down(tree, lazy, node);
        int ans = 0; int mid = (l + r) / 2;
        if(x <= mid) ans = query(tree, lazy, node * 2, l, mid, x, y);
        if(y > mid) ans = max(ans, query(tree, lazy, node * 2 + 1, mid + 1, r, x, y));
        return ans;
    
    }
    
    int main()
    {
        int n, q, x, y, w;
        cin >> n >> q;
        string s;
        //fill(a + 1, a + 1 + n, 1); 开始不是1!!!!! 是0!!!!!!
        build(tr2, 1, 1, n);
        build(tr3, 1, 1, n);
        build(tr5, 1, 1, n);
        build(tr7, 1, 1, n);
        while(q--)
        {
            cin >> s >> x >> y;
            if(s == "MULTIPLY")
            {
                cin >> w;
                if(w == 2) update(tr2, lz2, 1, 1, n, x, y, 1);
                else if(w == 3) update(tr3, lz3, 1, 1, n, x, y, 1);
                else if(w == 4) update(tr2, lz2, 1, 1, n, x, y, 2);
                else if(w == 5) update(tr5, lz5, 1, 1, n, x, y, 1);
                else if(w == 6)
                {
                    update(tr3, lz3, 1, 1, n, x, y, 1);
                    update(tr2, lz2, 1, 1, n, x, y, 1);
                }
                else if(w == 7) update(tr7, lz7, 1, 1, n, x, y, 1);
                else if(w == 8) update(tr2, lz2, 1, 1, n, x, y, 3);
                else if(w == 9) update(tr3, lz3, 1, 1, n, x, y, 2);
                else if(w == 10)
                {
                    update(tr2, lz2, 1, 1, n, x, y, 1);
                    update(tr5, lz5, 1, 1, n, x, y, 1);
                }
            }
            else
            {
                printf("ANSWER %d
    ", max({query(tr2, lz2, 1, 1, n, x, y), query(tr3, lz3, 1, 1, n, x, y), query(tr5, lz5, 1, 1, n, x, y), query(tr7, lz7, 1, 1, n, x, y)}));
                //printf("2: %d
    ", query(tr2, lz2, 1, 1, n, x, y));
                //printf("3: %d
    ", query(tr3, lz3, 1, 1, n, x, y));
                //printf("5: %d
    ", query(tr5, lz5, 1, 1, n, x, y));
                //printf("7: %d
    ", query(tr7, lz7, 1, 1, n, x, y));
            }
        }
    }

    F. Function! || 数学

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    const int mod = 998244353;
    
    ll qpow(ll a, ll b)
    {
        ll t = 1;
        for(; b; b >>= 1, a = a * a % mod)
            if(b & 1)  t = t * a % mod;
        return t;
    }
    
    ll cal(ll x)
    {
        return (x % mod * ((x + 1) % mod) % mod * ((2 * x + 1) % mod) % mod) * qpow(6, mod - 2) % mod; // 相乘每个数都要先取模,因为ll * ll可能会爆ll
    
    }
    
    int main()
    {
        ll n;
        cin >> n;
        int x = sqrt(n);
        ll sum = 0;
        for(int a = 2; a <= x; ++a)
        {
            ll tmp = a;
            ll cnt = 1;
            while(tmp <= n)
            {
                sum += min(tmp * (a - 1), n - tmp + 1) * cnt * a;
                //cout << sum << endl;
                sum %= mod;
                ++cnt;
                tmp *= a;
            }
            //cout << "tmp " << tmp << endl;
            //cout << a << endl;
            //cout << sum << endl;
        }
        //cout << sum << endl;
        //cout << (cal(n) - cal(x)) % mod << endl;
        sum -= cal(n) - cal(x);
        //cout << sum << endl;
        sum += 1LL * (n + 1) % mod * ((x + 1 + n) % mod) % mod * ((n - x) % mod) % mod * qpow(2, mod - 2) % mod;// 相乘每个数都要先取模,因为ll * ll可能会爆ll

    cout << (sum % mod + mod) % mod << endl; // 防止sum为负数,且注意上一行求得的sum还未取模,先要取一次模
    }
  • 相关阅读:
    start with connect by prior 递归查询用法(二)
    start with connect by prior 递归查询用法(一)
    oracle之spool详细使用总结
    关于ETL面试相关
    ETL常用的三种工具介绍及对比Datastage,Informatica和Kettle
    Oracle执行计划详解
    随机函数的使用(DBMS_RANDOM)
    oracle中的替换函数replace和translate函数
    ces
    文章11
  • 原文地址:https://www.cnblogs.com/Maxx-el/p/14059679.html
Copyright © 2011-2022 走看看