zoukankan      html  css  js  c++  java
  • 【BZOJ3991】【SDOI2015】寻宝游戏

    Description

    ​ 小B最近正在玩一个寻宝游戏,这个游戏的地图中有N个村庄和N-1条道路,并且任何两个村庄之间有且仅有一条路径可达。游戏开始时,玩家可以任意选择一个村庄,瞬间转移到这个村庄,然后可以任意在地图的道路上行走,若走到某个村庄中有宝物,则视为找到该村庄内的宝物,直到找到所有宝物并返回到最初转移到的村庄为止。
    ​ 小B希望评测一下这个游戏的难度,因此他需要知道玩家找到所有宝物需要行走的最短路程。但是这个游戏中宝物经常变化,有时某个村庄中会突然出现宝物,有时某个村庄内的宝物会突然消失,因此小B需要不断地更新数据,但是小B太懒了,不愿意自己计算,因此他向你求助。为了简化问题,我们认为最开始时所有村庄内均没有宝物

    Input

    ​ 第一行,两个整数N、M,其中M为宝物的变动次数。
    ​ 接下来的N-1行,每行三个整数x、y、z,表示村庄x、y之间有一条长度为z的道路。
    ​ 接下来的M行,每行一个整数t,表示一个宝物变动的操作。若该操作前村庄t内没有宝物,则操作后村庄内有宝物;若该操作前村庄t内有宝物,则操作后村庄内没有宝物。

    Output

    ​ M行,每行一个整数,其中第i行的整数表示第i次操作之后玩家找到所有宝物需要行走的最短路程。若只有一个村庄内有宝物,或者所有村庄内都没有宝物,则输出0。

    Sample Input

    4 5
    1 2 30
    2 3 50
    2 4 60
    2
    3
    4
    2
    1

    Sample Output

    0
    100
    220
    220
    280

    Hint

    (1 leq N,M leq 100000)
    对于全部的数据,(1 leq z leq 10^9)

    Solution

    题意就是叫你维护一棵虚树,求这棵虚树边权和的2倍,事实上,考虑利用dfs序维护,只需要维护相邻dfs序间的距离即可,利用<set>维护dfs序,增加删除的时候算一下影响的距离即可。时间复杂度(O(n log n))

    Code

    #include <stdio.h>
    #include <set>
    #define MN 100005
    #define R register
    #define ll long long
    #define file(x) freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);
    inline int read(){
    	R int x; R bool f; R char c;
    	for (f=0; (c=getchar())<'0'||c>'9'; f=c=='-');
    	for (x=c-'0'; (c=getchar())>='0'&&c<='9'; x=(x<<3)+(x<<1)+c-'0');
    	return f?-x:x;
    }
    int h[MN],to[MN<<1],nxt[MN<<1],en,n,v[MN<<1];ll dep[MN],nans;
    int sz[MN],son[MN],fa[MN],dfn[MN],top[MN],d[MN],dn,m,re[MN];char op[MN];
    std::set<int> s;bool b[MN];
    inline void ins(int x,int y,int vl){to[++en]=y,nxt[en]=h[x],v[en]=vl,h[x]=en;}
    inline void dfs(int u,int f,ll dis,int dd){
    	dep[u]=dis;fa[u]=f;sz[u]=1;d[u]=dd;
    	for (R int i=h[u]; i; i=nxt[i])
    		if (to[i]!=f){
    			dfs(to[i],u,dis+v[i],dd+1);sz[u]+=sz[to[i]];
    			if (sz[to[i]]>sz[son[u]]) son[u]=to[i];
    		}
    }
    inline void dfs(int u,int tp){
    	dfn[u]=++dn;re[dn]=u;top[u]=tp;if (son[u]) dfs(son[u],tp);
    	for (R int i=h[u]; i; i=nxt[i])
    		if (to[i]!=fa[u]&&to[i]!=son[u]) dfs(to[i],to[i]);
    }
    inline int lca(int x,int y){
    	while(top[x]!=top[y])
    		if (d[top[x]]>d[top[y]])  x=fa[top[x]];
    		else y=fa[top[y]];
    	return d[x]<d[y]?x:y;
    }
    inline int Left(int x){
    	std::set<int>::iterator it=s.find(dfn[x]);
    	if (it==s.begin()) return *(--s.end());
    	return *(--it);
    }
    inline int Right(int x){
    	std::set<int>::iterator it=s.find(dfn[x]);++it;
    	if (it==s.end()) return (*s.begin());
    	return *it;
    }
    inline void upp(int x){
    	nans+=dep[x];s.insert(dfn[x]);
    	R int l=Left(x),r=Right(x);
    	nans-=dep[lca(re[l],x)];
    	nans-=dep[lca(x,re[r])]; 
    	nans+=dep[lca(re[l],re[r])];	
    }
    inline void del(int x){
    	nans-=dep[x];
    	R int l=Left(x),r=Right(x);
    	nans+=dep[lca(re[l],x)];
    	nans+=dep[lca(x,re[r])];
    	nans-=dep[lca(re[l],re[r])];	
    	s.erase(dfn[x]);
    }
    inline ll query(){return nans<<1;}
    int main(){
    	n=read();m=read();for (R int i=1; i<n; ++i){
    		R int x=read(),y=read(),v=read();
    		ins(x,y,v); ins(y,x,v);
    	}dfs(1,0,0,1);dfs(1,1);
    	for (R int i=1,x; i<=m; ++i){
    		b[x=read()]^=1;if (b[x])upp(x);
    		else del(x);printf("%lld
    ",query());
    	}return 0;
    }
    
  • 相关阅读:
    Dockerfile中ENTRYPOINT 和 CMD的区别
    Dockerfile的书写规则和指令的使用方法
    docker+ bind mount 部署复杂flask应用
    VUE验证器哪家强? VeeValidate absolutely!
    DRF接入Oauth2.0认证[微博登录]报错21322重定向地址不匹配
    那些NPM文档中我看不懂地方
    “随机数”函数的 ES6 实现
    django-filter version 2.0 改动
    msgbox用法
    html01. <!DOCTYPE html>
  • 原文地址:https://www.cnblogs.com/Melacau/p/BZOJ3991.html
Copyright © 2011-2022 走看看