传送门:https://www.luogu.org/problem/lists?name=&orderitem=pid&tag=83%7C33
D1T1(toys)
题意:有n个小人,给你M条指令,每条指令可顺可逆(时针),问你操作后的位置在哪。
解题思路:裸模拟即可。
#include<stdio.h> using namespace std; #define MN 100005 char a[MN][15]; int n,m; bool b[MN]; inline int in(){ int x=0;char ch=getchar(); while(ch<'0'||ch>'9') ch=getchar(); while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x; } int main(){ n=in();m=in(); for (int i=1; i<n; ++i){b[i]=in();scanf("%s",a[i]);} b[0]=in();scanf("%s",a[0]); int nt=1; for(int i=1; i<=m; ++i){ int x=(in()^b[nt])?1:-1,k=in();nt+=k*x; if (nt<0) nt+=2*n;nt%=n; } puts(a[nt]); }
D1T2(running)
大丧题,解题思路已经存在博客中了,这里放一下传送门,顺便贴个代码。
传送门:http://www.cnblogs.com/Melacau/p/NOIP2016_running.html
贴代码:
#include<stdio.h> #define MN 300005 #define nt edge[i].to struct zxy{int to,next;}edge[MN*8];//链表(把多个链表都塞进去了) int cnt,h[MN],q[MN],adh1[MN],deh1[MN],adh2[MN],deh2[MN];//各链表表头 int qans[MN],tim[MN],deep[MN],n,m,chafen[MN*3],fa[MN],ans[MN],x[MN],y[MN]; bool vis[MN]; inline void ins(int *h,int x,int y){edge[++cnt].next=h[x],edge[cnt].to=y,h[x]=cnt;}//构造链表 inline int getfa(int x){return fa[x]?fa[x]=getfa(fa[x]):x;}//并查集 inline int in(){ int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9') f=ch=='-'?-1:1,ch=getchar(); while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x*f; } inline void tjlca(int x,int d){ deep[x]=d;vis[x]=1; for (register int i=h[x]; i; i=edge[i].next) if (!vis[nt])tjlca(nt,d+1),fa[nt]=x; for (register int i=q[x]; i; i=edge[i].next) if (qans[nt]) qans[nt]=getfa(qans[nt]); else qans[nt]=x; }//tarjan算法求LCA inline void dfs1(int u){ vis[u]=0;ans[u]-=chafen[deep[u]-tim[u]]; for (register int i=h[u]; i; i=edge[i].next) if (vis[nt]) dfs1(nt); for (register int i=adh1[u]; i; i=edge[i].next) ++chafen[nt]; ans[u]+=chafen[deep[u]-tim[u]]; for (register int i=deh1[u]; i; i=edge[i].next) --chafen[nt]; }//dfs处理S->f的 inline void dfs2(int u){ vis[u]=1;ans[u]-=chafen[deep[u]+tim[u]]; for (register int i=h[u]; i; i=edge[i].next) if (!vis[nt]) dfs2(nt); for (register int i=adh2[u]; i; i=edge[i].next) ++chafen[nt]; ans[u]+=chafen[deep[u]+tim[u]]; for (register int i=deh2[u]; i; i=edge[i].next) --chafen[nt]; }//dfs处理f->T的 void read(){ n=in(),m=in();int u,v; for (int i=1; i<n; ++i) u=in(),v=in(),ins(h,u,v),ins(h,v,u); for (register int i=1; i<=n; ++i) tim[i]=in()-MN;//为了防止减法出现负数,所以我们要这么做。 for (register int i=1; i<=m; ++i) x[i]=in(),y[i]=in(),ins(q,x[i],i),ins(q,y[i],i); }//输入 void init(){ tjlca(1,0); for (register int i=1; i<=m; ++i){ int f=qans[i],u=x[i],v=y[i]; if (f==v) ins(adh2,u,deep[u]+MN),ins(deh2,v,deep[u]+MN); else{ if (f==u) ins(adh1,v,deep[u]+MN),ins(deh1,u,deep[u]+MN); else{ ins(adh2,u,deep[u]+MN); ins(deh2,f,deep[u]+MN); ins(adh1,v,(deep[f]<<1)-deep[u]+MN); ins(deh1,f,(deep[f]<<1)-deep[u]+MN); if(deep[f]==deep[u]-tim[f]-MN) --ans[f]; } } } }//处理差分位置 void solve(){ dfs1(1);//进行第一次遍历统计答案 for (register int i=1; i<=n; ++i) tim[i]+=MN<<1;//这个处理很关键! dfs2(1); for (register int i=1; i<n; ++i) printf("%d ",ans[i]); printf("%d",ans[n]); } int main(){ read(); init(); solve(); }
D1T3(classroom)
题意:给你V个点,你一共要执行N个阶段,每个阶段可能在任意2个点上进行,不同点的概率不同,求执行完所有阶段的期望。
解题思路:floyd预处理最短路,然后跑期望DP。(注意精度控制)
#include <stdio.h> #include <string.h> #define min(a,b) (a<b?a:b) #define inf 1e9 #define MN 2001 #define MV 301 using namespace std; int n,m,v,e,cnt,dis[MV][MV],c[MN],d[MN]; double qw[MN],ans=inf,f[MN][MN][2]; inline int in(){ int x=0,f=1;char c=getchar(); while(c<'0'||c>'9') f=c=='-'?-1:1,c=getchar(); while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar(); return x*f; } void init(){ n=in(),m=in(),v=in(),e=in(); for (int i=1; i<=n; ++i) c[i]=in(); for (register int i=1; i<=n; ++i) d[i]=in(); for (register int i=1; i<=n; ++i) scanf("%lf",&qw[i]); for(register int i=1; i<=v; ++i) for(int j=1; j<=v; ++j){ dis[i][j]=inf; if(!(i^j))dis[i][j]=0; } for (register int i=1; i<=e; ++i){register int x=in(),y=in(),c=in();dis[x][y]=dis[y][x]=min(dis[x][y],c);} } void floyd(){ for (int k=1; k<=v; ++k) for (register int i=1; i<=v; ++i) for (int j=1; j<=v; ++j) if (i^j&&i^k&&j^k) if(dis[i][j]>dis[i][k]+dis[k][j]) dis[i][j]=dis[i][k]+dis[k][j]; } void dp(){ if (n==1) {puts("0.00");return;} for (register int i=0; i<=m; ++i) f[1][i][0]=f[1][i][1]=0; for (register int i=2; i<=n; ++i) for (register int j=0; j<=min(i,m); ++j){ f[i][j][0]=f[i][j][1]=inf; if(i^j){ if((i-1)^j) f[i][j][0]=min(f[i][j][0],f[i-1][j][0]+dis[c[i-1]][c[i]]); if(j) f[i][j][0]=min(f[i][j][0],f[i-1][j][1]+qw[i-1]*dis[d[i-1]][c[i]]+(1-qw[i-1])*dis[c[i-1]][c[i]]); if (!(i^n)) ans=min(ans,f[i][j][0]); } if(j){ if(j>1) f[i][j][1]=f[i-1][j-1][1]+qw[i-1]*qw[i]*dis[d[i-1]][d[i]]+qw[i-1]*(1-qw[i])*dis[d[i-1]][c[i]]+(1-qw[i-1])*qw[i]*dis[c[i-1]][d[i]]+(1-qw[i-1])*(1-qw[i])*dis[c[i-1]][c[i]]; if(i^j) f[i][j][1]=min(f[i][j][1],f[i-1][j-1][0]+qw[i]*dis[c[i-1]][d[i]]+(1-qw[i])*dis[c[i-1]][c[i]]); if (!(i^n)) ans=min(ans,f[i][j][1]); } } printf("%.2lf",ans); } int main(){init();floyd();dp();return 0;}
D2T1(problem)
题意:自己看题目。
解题思路:杨辉三角形递推预处理即可,注意对k取余。
#include<stdio.h> #define max(a,b) (a>b?a:b) int t,k,n[10001],m[10001],mn,f[2005000],ans[2005000]; inline int in(){ int x=0,f=1; char c=getchar(); while(c<'0'||c>'9') f=c=='-'?-1:1,c=getchar(); while(c>='0'&&c<='9') x=x*10+c-48,c=getchar(); return x*f; } inline int doit(int n,int m){return n*(n+1)/2+m;} void init(){ t=in(),k=in(); for (register int i=1; i<=t; ++i){n[i]=in();m[i]=in();mn=max(n[i],mn);} for (register int i=0; i<=mn; ++i) f[doit(i,0)]=1; for (register int i=1; i<=mn; ++i) for (register int j=1; j<=i; ++j) if(i^j){ ans[doit(i,j)]=ans[doit(i-1,j)]+ans[doit(i,j-1)]-ans[doit(i-1,j-1)]; f[doit(i,j)]=(f[doit(i-1,j-1)]+f[doit(i-1,j)])%k; if (!(f[doit(i,j)]%k)) ans[doit(i,j)]++; } else{ ans[doit(i,j)]=ans[doit(i,j-1)]; f[doit(i,j)]=f[doit(i-1,j-1)]; if (!(f[doit(i,j)]%k)) ans[doit(i,j)]++; } } void solve(){ for (register int i=1; i<=t; ++i) if (n[i]<m[i]) printf("%d ",ans[doit(n[i],n[i])]); else printf("%d ",ans[doit(n[i],m[i])]); } int main(){init();solve();return 0;}
D2T2(earthworm)
题意:就是你每次会选一堆东西中最长的出来,然后切成2部分再扔回去,叫你模拟出这个过程。
解题思路:正常的想法是扔个堆,然后按题意搞,时间会T((O((n+m)lg (n+m) )))。容易发现切出来的东西其实是有单调性的= =,然后就可以用3个队列(1个初始队列,2个切出来的队列)愉快的优化了,时间效率是(O(n lg n+m ) )
/*代码在luogu上T了1个点。。。估计评测机太慢= =,BZOJ上过了,就假装没问题吧。*/
#include <stdio.h> #include <algorithm> #include <math.h> #include <iostream> #define MN 100005 #define MM 7000005 #define ll long long #define inf 0x7fffffffffffffffLL #define max(a,b) (a>b?a:b) using namespace std; int h[3],t[3],m,tt,dl; ll que[3][MN+MM],q,u,v; inline int in(){ int x=0,f=1; char ch=getchar(); while (ch<'0'||ch>'9') f=ch=='-'?-1:1,ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x*f; } inline ll get_top(){ ll ma=-inf;dl=-1; for (register int i=0; i<3; ++i) if (h[i]<=t[i]&&que[i][h[i]]>ma) ma=que[i][h[i]],dl=i; if (dl!=-1) ++h[dl];return ma; } void init(){ t[0]=in(),m=in(),q=in(),u=in(),v=in(),tt=in(); for (int i=1; i<=t[0]; ++i) que[0][i]=in(); sort(que[0]+1,que[0]+1+t[0],greater<int>()); h[0]=h[1]=h[2]=1; } void solve(){ for (register int i=1; i<=m; ++i){ ll w=get_top()+(i-1)*q; if (i%tt==0) if (i/tt==1) printf("%lld",w); else printf("% lld",w); que[1][++t[1]]=w*u/v-i*q; que[2][++t[2]]=w-(w*u/v)-i*q; }putchar(' '); for (register int i=1; ; ++i){ ll w=get_top()+m*q; if (dl==-1) break; if (i%tt==0) if (i/tt==1) printf("%lld",w);else printf("% lld",w); } } int main(){init();solve();return 0;}
D2T3(angrybirds)
题意:给你n个点,你需要用最少的过原点的抛物线将这些点覆盖,求最少的抛物线数。
解题思路:首先,3点定抛物线,因为过原点,所以是2点定抛物线,然后暴力算任意2点连的抛物线,接着在此基础上O(n)算出这条抛物线直接经过了多少个点,最后根据这个跑一次状压DP即可。
#include <stdio.h> #include <string.h> #define eps 1e-8 #define abs(x) (x<0?(-1)*(x):x) #define MN 18 double x[MN],y[MN]; int f[MN][MN],dp[1<<MN],n,m; inline void init(){ scanf("%d%*d",&n); for (register int i=0; i<n; ++i) scanf("%lf%lf",&x[i],&y[i]),y[i]/=x[i]; memset(f,0,sizeof(f)); for (register int i=0; i<n; ++i) for (register int j=0; j<n; ++j) if (i^j){ register double a=(y[i]-y[j])/(x[i]-x[j]); if (a>=0) continue; register double b=(x[i]*y[j]-x[j]*y[i])/(x[i]-x[j]); for (register int k=n-1; k+1; --k) f[i][j]=(f[i][j]<<1)+(abs(a*x[k]+b-y[k])<eps); } } inline void solve(){ memset(dp,0x3f,sizeof(dp));dp[0]=0; for (register int i=0; i<(1<<n)-1; ++i){ register int j=0;for (; i&(1<<j); ++j); if (dp[i]+1<dp[i|(1<<j)]) dp[i|(1<<j)]=dp[i]+1; for (register int k=0; k<n; ++k) if (dp[i]+1<dp[i|f[j][k]]) dp[i|f[j][k]]=dp[i]+1; } printf("%d ",dp[(1<<n)-1]); } int main(){int T;scanf("%d",&T);while(T--) init(),solve();return 0;}