题目大意:给一张无向图,找一条字典序最小的欧拉路径
题解:若图不连通或有两个以上的奇数点,则没有欧拉路径,可以$dfs$,在回溯时把这个节点加入答案
卡点:没有在回溯时加入答案,导致出现了欧拉路径没走环(少走了一段)
C++ Code:
#include <cstdio> #include <cctype> #include <algorithm> #define maxn 60 int m, start = 52, ind[maxn]; int v[maxn], n, ret[256]; bool e[maxn][maxn]; char ans[maxn * maxn]; int f[maxn]; int find(int x) {return x == f[x] ? x : (f[x] = find(f[x]));} void dfs(int u) { for (int i = 1; i <= n; i++) if (e[u][i]) { e[u][i] = e[i][u] = false; dfs(i); } ans[m--] = v[u]; } int main() { scanf("%d", &m); for (int i = 'A'; i <= 'Z'; i++) v[++n] = i, ret[i] = n; for (int i = 'a'; i <= 'z'; i++) v[++n] = i, ret[i] = n; for (int i = 1; i <= n; i++) f[i] = i; for (int i = 0; i < m; i++) { char ch = getchar(); while (!isalpha(ch)) ch = getchar(); int a = ret[static_cast<int> (ch)], b; ch = getchar(); while (!isalpha(ch)) ch = getchar(); b = ret[static_cast<int> (ch)]; start = std::min(start, std::min(a, b)); e[a][b] = e[b][a] = true; ind[a]++, ind[b]++; f[find(a)] = find(b); } int cnt = 0; for (int i = 1; i <= n; i++) if (ind[i] && f[i] == i) cnt++; if (cnt > 1) { puts("No Solution"); return 0; } cnt = 0; for (int i = 1; i <= n; i++) if (ind[i] & 1) { if (!cnt) start = i; cnt++; } if (cnt > 2) { puts("No Solution"); return 0; } dfs(start); puts(ans); return 0; }