题目大意:给你一个矩阵$A$,求它的逆矩阵$A^{-1}$,使得$AA^{-1}=I$
题解:设$A=IE_1E_2cdots E_k$($E_i$为一个变换),那么$A^{-1}=E_k^{-1}E_{k-1}^{-1}cdots E_{1}^{-1}$,可以在$A$变为$I$的时候对$I$做相同的操作。当$A$变为$I$时,$I$就变成了$A^{-1}$
卡点:无
C++ Code:
#include <algorithm> #include <cstdio> const int mod = 1e9 + 7; inline int pw(int base, int p) { static int res; for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod; return res; } inline int inv(int x) { return pw(x, mod - 2); } inline void reduce(int &x) { x += x >> 31 & mod; } #define maxn 405 int n, nn; int s[maxn][maxn << 1]; int main() { scanf("%d", &n); nn = n + n; for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) scanf("%d", s[i] + j); s[i][n + i] = 1; } for (int i = 1; i <= n; ++i) { int pos = i; while (pos <= n && !s[pos][i]) ++pos; if (pos > n) { puts("No Solution"); return 0; } for (int j = i; j <= nn; ++j) std::swap(s[pos][j], s[i][j]); const int Inv = inv(s[i][i]); for (int j = i; j <= nn; ++j) s[i][j] = static_cast<long long> (s[i][j]) * Inv % mod; for (int j = 1; j <= n; ++j) if (i != j) { const int t = s[j][i]; for (int k = i; k <= nn; ++k) reduce(s[j][k] -= static_cast<long long> (s[i][k]) * t % mod); } } for (int i = 1; i <= n; ++i) { for (int j = n + 1; j <= nn; ++j) printf("%d ", s[i][j]); puts(""); } return 0; }