zoukankan      html  css  js  c++  java
  • [洛谷P4723]【模板】线性递推

    题目大意:求一个满足$k$阶齐次线性递推数列$a_i$的第$n$项。

    即:$a_n=sumlimits_{i=1}^{k}f_i imes a_{n-i}$

    解:线性齐次递推,先见洛谷题解,下回再补

    卡点:数组大小计算错误,求逆中途计算时忘记加$mod$等

    C++ Code:(这份全部是板子,可以用来测试,但是常数巨大)

    #include <algorithm>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #define maxk 32010
    #define maxn 131072
    const int mod = 998244353;
    
    #define mul(x, y) static_cast<long long> (x) * (y) % mod
    
    namespace Math {
    	inline int pw(int base, int p) {
    		static int res;
    		for (res = 1; p; p >>= 1, base = mul(base, base)) if (p & 1) res = mul(res, base);
    		return res;
    	}
    	inline int inv(int x) { return pw(x, mod - 2); }
    }
    inline void reduce(int &x) { x += x >> 31 & mod; }
    
    namespace Poly {
    #define N maxn
    	int lim, s, rev[N], Wn[N];
    	inline void init(const int n) {
    		lim = 1, s = -1; while (lim < n) lim <<= 1, ++s;
    		for (register int i = 1; i < lim; ++i) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
    		const int t = Math::pw(3, (mod - 1) / lim);
    		*Wn = 1; for (register int *i = Wn + 1; i != Wn + lim; ++i) *i = mul(*(i - 1), t);
    	}
    	inline void FFT(int *A, const int op = 1) {
    		for (register int i = 1; i < lim; ++i) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
    		for (register int mid = 1; mid < lim; mid <<= 1) {
    			const int t = lim / mid >> 1;
    			for (register int i = 0; i < lim; i += mid << 1)
    				for (register int j = 0; j < mid; ++j) {
    					const int X = A[i + j], Y = mul(A[i + j + mid], Wn[t * j]);
    					reduce(A[i + j] += Y - mod), reduce(A[i + j + mid] = X - Y);
    				}
    		}
    		if (!op) {
    			const int ilim = Math::inv(lim);
    			for (register int *i = A; i != A + lim; ++i) *i = mul(*i, ilim);
    			std::reverse(A + 1, A + lim);
    		}
    	}
    
    	void INV(int *A, int *B, int n) {
    		if (n == 1) { *B = Math::inv(*A); return ; }
    		static int C[N], D[N];
    		const int len = n + 1 >> 1;
    		INV(A, B, len), init(len * 3);
    		std::memcpy(C, A, n << 2), std::memset(C + n, 0, lim - n << 2);
    		std::memcpy(D, B, len << 2), std::memset(D + len, 0, lim - len << 2);
    		FFT(C), FFT(D);
    		for (int i = 0; i < lim; ++i) D[i] = (2 - mul(D[i], C[i]) + mod) * D[i] % mod;
    		FFT(D, 0);
    		std::memcpy(B + len, D + len, n - len << 2);
    	}
    	void DIV(int *A, int *B, int *Q, int n, int m) {
    		static int C[N], D[N], E[N];
    		const int len = n - m + 1;
    		std::reverse_copy(A, A + n, C), std::reverse_copy(B, B + m, D);
    		INV(D, E, len), init(len << 1);
    		std::memset(C + len, 0, lim - len << 2), std::memset(E + len, 0, lim - len << 2);
    		FFT(C), FFT(E);
    		for (int i = 0; i < lim; ++i) Q[i] = mul(C[i], E[i]);
    		FFT(Q, 0), std::reverse(Q, Q + len);
    	}
    	void DIV_MOD(int *A, int *B, int *Q, int *R, int n, int m) {
    		static int C[N], D[N], E[N];
    		const int len = n - m + 1;
    		DIV(A, B, Q, n, m), init(n << 1);
    		std::memcpy(C, A, n << 2), std::memset(C + n, 0, lim - n << 2);
    		std::memcpy(D, B, m << 2), std::memset(D + m, 0, lim - m << 2);
    		std::memcpy(E, Q, len << 2), std::memset(E + len, 0, lim - len << 2);
    		FFT(C), FFT(D), FFT(E);
    		for (int i = 0; i < lim; ++i) reduce(R[i] = C[i] - mul(D[i], E[i]));
    		FFT(R, 0);
    	}
    	void MOD(int *A, int *B, int m) {
    		static int Q[N], R[N];
    		DIV_MOD(A, B, Q, R, (m << 1) - 1, m + 1);
    		std::memcpy(A, R, m << 2);
    	}
    
    	void POW(int *base, int p, int *Mod, int m) {
    		static int res[N], T[N];
    		res[0] = 1;
    		while (p) {
    			if (p & 1) {
    				init(m << 1), std::memset(res + m, 0, lim - m << 2);
    				std::memcpy(T, base, m << 2), std::memset(T + m, 0, lim - m << 2);
    				FFT(T), FFT(res);
    				for (int i = 0; i < lim; ++i) res[i] = mul(res[i], T[i]);
    				FFT(res, 0); MOD(res, Mod, m);
    			}
    			p >>= 1;
    			if (p) {
    				init(m << 1), std::memset(base + m, 0, lim - m << 2);
    				FFT(base);
    				for (int i = 0; i < lim; ++i) base[i] = mul(base[i], base[i]);
    				FFT(base, 0), MOD(base, Mod, m);
    			}
    		}
    		std::memcpy(base, res, m << 2);
    	}
    
    	int solve(int *f, int *a, int n, int k) { //a为递推式0~k-1项,f为转移数组1~k项
    		static int A[maxn], G[maxn];
    		for (int i = 1; i <= k; ++i) reduce(G[k - i] = -f[i]);
    		G[k] = A[1] = 1;
    		Poly::POW(A, n, G, k);
    		int ans = 0;
    		for (int i = 0; i < k; ++i) reduce(ans += mul(A[i], a[i]) - mod);
    		return ans;
    	}
    #undef N
    }
    
    int n, k;
    int f[maxk], a[maxk];
    int main() 
    	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
    	std::cin >> n >> k;
    	for (int i = 1; i <= k; ++i) std::cin >> f[i];
    	for (int i = 0; i < k; ++i) std::cin >> a[i], reduce(a[i]);
    	std::cout << Poly::solve(f, a, n, k) << '
    ';
    	return 0;
    }
    

     

    发现取模的那一个多项式是一定的,可以预处理出它的逆元以及点值表达式等,减小常数。

    C++ Code:(这一份常数还算正常)

    #include <algorithm>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #define maxk 32010
    #define maxn 65536
    const int mod = 998244353;
    
    #define mul(x, y) static_cast<long long> (x) * (y) % mod
    
    namespace Math {
    	inline int pw(int base, int p) {
    		static int res;
    		for (res = 1; p; p >>= 1, base = mul(base, base)) if (p & 1) res = mul(res, base);
    		return res;
    	}
    	inline int inv(int x) { return pw(x, mod - 2); }
    }
    inline void reduce(int &x) { x += x >> 31 & mod; }
    
    namespace Poly {
    #define N maxn
    	int lim, s, rev[N], Wn[N];
    	inline void init(const int n) {
    		lim = 1, s = -1; while (lim < n) lim <<= 1, ++s;
    		for (register int i = 1; i < lim; ++i) rev[i] = rev[i >> 1] >> 1 | (i & 1) << s;
    		const int t = Math::pw(3, (mod - 1) / lim);
    		*Wn = 1; for (register int *i = Wn + 1; i != Wn + lim; ++i) *i = mul(*(i - 1), t);
    	}
    	inline void FFT(int *A, const int op = 1) {
    		for (register int i = 1; i < lim; ++i) if (i < rev[i]) std::swap(A[i], A[rev[i]]);
    		for (register int mid = 1; mid < lim; mid <<= 1) {
    			const int t = lim / mid >> 1;
    			for (register int i = 0; i < lim; i += mid << 1)
    				for (register int j = 0; j < mid; ++j) {
    					const int X = A[i + j], Y = mul(A[i + j + mid], Wn[t * j]);
    					reduce(A[i + j] += Y - mod), reduce(A[i + j + mid] = X - Y);
    				}
    		}
    		if (!op) {
    			const int ilim = Math::inv(lim);
    			for (register int *i = A; i != A + lim; ++i) *i = mul(*i, ilim);
    			std::reverse(A + 1, A + lim);
    		}
    	}
    
    	void INV(int *A, int *B, int n) {
    		if (n == 1) { *B = Math::inv(*A); return ; }
    		static int C[N], D[N];
    		const int len = n + 1 >> 1;
    		INV(A, B, len), init(len * 3);
    		std::memcpy(C, A, n << 2), std::memset(C + n, 0, lim - n << 2);
    		std::memcpy(D, B, len << 2), std::memset(D + len, 0, lim - len << 2);
    		FFT(C), FFT(D);
    		for (int i = 0; i < lim; ++i) D[i] = (2 - mul(D[i], C[i]) + mod) * D[i] % mod;
    		FFT(D, 0);
    		std::memcpy(B + len, D + len, n - len << 2);
    	}
    
    	int G[N], INVG[N];
    	void DIV(int *A, int *Q, int n, int m) {
    		static int C[N];
    		const int len = n - m + 1;
    		std::reverse_copy(A, A + n, C), std::memset(C + len, 0, lim - len << 2);
    		FFT(C);
    		for (int i = 0; i < lim; ++i) Q[i] = mul(C[i], INVG[i]);
    		FFT(Q, 0), std::reverse(Q, Q + len);
    	}
    	void DIV_MOD(int *A, int *R, int n, int m) {
    		static int Q[N];
    		const int len = n - m + 1;
    		DIV(A, Q, n, m), std::memset(Q + len, 0, lim - len << 2);
    		FFT(Q);
    		for (int i = 0; i < lim; ++i) R[i] = mul(G[i], Q[i]);
    		FFT(R, 0);
    		for (int i = 0; i < m; ++i) reduce(R[i] = A[i] - R[i]);
    	}
    
    	void POW(int *A, int p, int m) {
    		if (!p) return ;
    		POW(A, p >> 1, m);
    		static int T[N];
    		std::memcpy(T, A, m << 2), std::memset(T + m, 0, lim - m << 2);
    		FFT(T);
    		for (int i = 0; i < lim; ++i) T[i] = mul(T[i], T[i]);
    		FFT(T, 0);
    		if (p & 1) {
    			for (int i = 2 * m - 1; ~i; --i) T[i] = T[i - 1];
    			T[0] = 0;
    		}
    		DIV_MOD(T, A, 2 * m, m + 1);
    	}
    
    	int solve(int *f, int *a, int n, int k) { //a为递推式0~k-1项,f为转移数组1~k项
    		static int A[maxn], B[maxn];
    		for (int i = 1; i <= k; ++i) reduce(G[k - i] = -f[i]);
    		G[k] = A[0] = 1;
    		std::reverse_copy(G, G + k + 1, B), B[k] = 0;
    		INV(B, INVG, k), init(k << 1);
    		FFT(G), FFT(INVG);
    		Poly::POW(A, n, k);
    		int ans = 0;
    		for (int i = 0; i < k; ++i) reduce(ans += mul(A[i], a[i]) - mod);
    		return ans;
    	}
    #undef N
    }
    
    int n, k;
    int f[maxk], a[maxk];
    int main() {
    	std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
    	std::cin >> n >> k;
    	for (int i = 1; i <= k; ++i) std::cin >> f[i];
    	for (int i = 0; i < k; ++i) std::cin >> a[i], reduce(a[i]);
    	std::cout << Poly::solve(f, a, n, k) << '
    ';
    	return 0;
    }
    

      

     

  • 相关阅读:
    网络知识学习系列(一)
    C# 开发系列(三)
    angularJS 系列(三)- 自定义 Service
    添加百度地图,显示定位
    angularJS 系列(二)——理解指令 understanding directives
    angularJS 系列(一)
    hbuilder 手机app开发系列(一)
    vue + 百度地图api
    百度地图api
    canvas的api
  • 原文地址:https://www.cnblogs.com/Memory-of-winter/p/10389291.html
Copyright © 2011-2022 走看看