zoukankan      html  css  js  c++  java
  • [洛谷P3227][HNOI2013]切糕

    题目大意:有一个$n imes m$的切糕,每一个位置的高度可以在$[1,k]$之间,每个高度有一个代价,要求四联通的两个格子之间高度最多相差$D$,问可行的最小代价。$n,m,k,Dleqslant 40$

    题解:网络流,不考虑相差为$D$的条件时,可以给每个位置建一个点,源点连向高度为$1$的点容量为$infty$,高度为$i$的点连向这个位置高度为$i+1$的点,容量为代价,高度为$k$的连向汇点,容量为代价。跑最小割。

    考虑相差为$D$的条件,可以对于相邻的两个点$A,B$,连接$A_i o B_{i-D}$的容量为$infty$的边这样就强制限定两个点的最小割必须相距小于等于$D$,跑最小割即可

    卡点:加边的时候多加了$k$倍,导致又$TLE$又$RE$

    C++ Code:

    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    const int inf = 0x3f3f3f3f;
    
    namespace std {
    	struct istream {
    #define M (1 << 24 | 3)
    		char buf[M], *ch = buf - 1;
    		inline istream() { fread(buf, 1, M, stdin); }
    		inline istream& operator >> (int &x) {
    			while (isspace(*++ch));
    			for (x = *ch & 15; isdigit(*++ch); ) x = x * 10 + (*ch & 15);
    			return *this;
    		}
    #undef M
    	} cin;
    	struct ostream {
    #define M (1 << 10 | 3)
    		char buf[M], *ch = buf - 1;
    		inline ostream& operator << (int x) {
    			if (!x) {*++ch = '0'; return *this;}
    			static int S[20], *top; top = S;
    			while (x) {*++top = x % 10 ^ 48; x /= 10;}
    			for (; top != S; --top) *++ch = *top;
    			return *this;
    		}
    		inline ostream& operator << (const char x) {*++ch = x; return *this;}
    		inline ~ostream() { fwrite(buf, 1, ch - buf + 1, stdout); }
    #undef M
    	} cout;
    }
    
    namespace Network_Flow {
    	const int maxn = 50 * 50 * 50, maxm = maxn * 6;
    
    	int lst[maxn], head[maxn], cnt = 1;
    	struct Edge {
    		int to, nxt, w;
    	} e[maxm << 1];
    	void addedge(int a, int b, int c) {
    		e[++cnt] = (Edge) { b, head[a], c }; head[a] = cnt;
    		e[++cnt] = (Edge) { a, head[b], 0 }; head[b] = cnt;
    	}
    
    	int st, ed, n, MF;
    	int GAP[maxn], dis[maxn], q[maxn], h, t;
    	void init() {
    		GAP[dis[q[h = t = 0] = ed] = 1] = 1;
    		for (int i = st; i <= ed; ++i) lst[i] = head[i];
    		while (h <= t) {
    			int u = q[h++];
    			for (int i = head[u], v; i; i = e[i].nxt) {
    				v = e[i].to;
    				if (!dis[v]) {
    					++GAP[dis[v] = dis[u] + 1];
    					q[++t] = v;
    				}
    			}
    		}
    	}
    	int dfs(int u, int low) {
    		if (!low || u == ed) return low;
    		int w, res = 0;
    		for (int &i = lst[u], v; i; i = e[i].nxt) if (e[i].w) {
    			v = e[i].to;
    			if (dis[u] == dis[v] + 1) {
    				w = dfs(v, std::min(low, e[i].w));
    				res += w, low -= w;
    				e[i].w -= w, e[i ^ 1].w += w;
    				if (!low) return res;
    			}
    		}
    		if (!--GAP[dis[u]]) dis[st] = n + 1;
    		++GAP[++dis[u]], lst[u] = head[u];
    		return res;
    	}
    	void ISAP(int S, int T) {
    		st = S, ed = T, n = T - S + 1;
    		init(); while (dis[st] <= n) MF += dfs(st, inf);
    	}
    }
    
    int n, m, h, D;
    int v[50][50][50];
    int pos[50][50][50], idx, st, ed;
    
    void addedge(int x, int y, int z, int w) {
    	for (int i = D + 1; i <= h; ++i)
    		Network_Flow::addedge(pos[x][y][i], pos[z][w][i - D], inf);
    }
    int main() {
    	std::cin >> n >> m >> h >> D;
    	for (int i = 1; i <= h; ++i)
    		for (int j = 1; j <= n; ++j)
    			for (int k = 1; k <= m; ++k) {
    				pos[j][k][i] = ++idx;
    				std::cin >> v[j][k][i];
    			}
    	st = 0, ed = ++idx;
    	for (int i = 1; i <= n; ++i)
    		for (int j = 1; j <= m; ++j) {
    			for (int k = 1; k <= h; ++k) {
    				if (k == 1) Network_Flow::addedge(st, pos[i][j][k], inf);
    				if (k == h) Network_Flow::addedge(pos[i][j][k], ed, v[i][j][k]);
    				else Network_Flow::addedge(pos[i][j][k], pos[i][j][k + 1], v[i][j][k]);
    			}
    			if (i != 1) addedge(i, j, i - 1, j);
    			if (i != n) addedge(i, j, i + 1, j);
    			if (j != 1) addedge(i, j, i, j - 1);
    			if (j != n) addedge(i, j, i, j + 1);
    		}
    	Network_Flow::ISAP(st, ed);
    	std::cout << Network_Flow::MF << '
    ';
    	return 0;
    }
    

      

  • 相关阅读:
    HTML中所用的标签(二)
    HTML中所用的标签(一)
    学习笔记之04表格嵌套练习1
    学习笔记之03百度搜索页面
    学习笔记之02简单的基础
    学习笔记之01程序员起航篇
    Part 53 to 55 Talking about Reflection in C#
    Part 48 to 51 Talking about Access Modifiers in C#
    Part 59 to 60 Difference between Convert ToString and ToString,String and StringBuilder
    Part 57 to 58 Why should you override ToString and Equal Method
  • 原文地址:https://www.cnblogs.com/Memory-of-winter/p/11272923.html
Copyright © 2011-2022 走看看