题目大意:有$n$个点$(x_i,y_i)$,求一个$n-1$次的多项式满足$f(x_i)equiv y_ipmod{998244353}$。$nleqslant10^5$
题解:先有拉格朗日插值公式:
$$
sumlimits_iy_iprodlimits_{j
ot=i}dfrac{x-x_j}{x_i-x_j}
$$
发现,如果这么去做,至少是$O(n^2)$的,并不可以通过。考虑优化这个式子,把它拆开
$$
egin{align*}
&sumlimits_{i=1}^ny_iprodlimits_{j
ot=i}dfrac{x-x_j}{x_i-x_j}\
=&sumlimits_{i=1}^ndfrac{y_i}{prod_{j
ot=i}(x_i-x_j)}prodlimits_{j
ot=i}(x-x_j)
end{align*}
$$
令$G(x)=prodlimits_{i=1}^n(x-x_i)$,可知$prodlimits_{j
ot=i}(x_i-x_j)=dfrac{G(x)}{x-x_i}$,因为分母为$0$,不可以直接求。由于上下在$x_i$处均为$0$,可使用洛必达法则:
$$
limlimits_{x o x_i}dfrac{G(x)}{x-x_i}=G'(x)
$$
故$prodlimits_{j
ot=i}(x_i-x_j)=G'(x_i)$,所以可以构造$G'(x)$然后多点求值求得$G'(x)$在每个$x_i$处的点值。此时,式子变成了:
$$
sumlimits_{i=1}^ndfrac{y_i}{G'(x_i)}prodlimits_{j
ot=i}(x-x_i)
$$
令$F_{L,R}$为$[L,R)$内的答案,$P_{L,R}=prodlimits_{i=L}^{R-1}(x-x_i)$,则$F_{L,R}=P_{L,M}Q_{M,R}+P_{M,R}Q_{L,M}$
卡点:调试记录断点没有删除,然后调了好久
C++ Code:
#include <cstdio> #include <cstring> #include <algorithm> #include <iostream> #include <vector> #define mul(a, b) (static_cast<long long> (a) * (b) % mod) #define _mul(a, b) (a = static_cast<long long> (a) * (b) % mod) #define clr(A, l, r) (std::memset(A + (l), 0, (r) - (l) << 2)) #define cpy(A, B, len) (std::memcpy(A, B, (len) << 2)) #define cpyclr(A, B, len) (cpy(A, B, len), clr(A, len, lim)) const int maxn = 1 << 18, mod = 998244353; typedef std::vector<int> VI; inline void reduce(int &x) { x += x >> 31 & mod; } namespace Math { inline int pw(int base, int p) { static int res; for (res = 1; p; p >>= 1, _mul(base, base)) if (p & 1) _mul(res, base); return res; } inline int inv(int x) { return pw(x, mod - 2); } } namespace Poly { #define N maxn int lim, s, rev[N], Wn[N]; inline void FFTINIT(int n) { lim = 1, s = 0; while (lim < n) lim <<= 1, ++s; for (int i = 1; i < lim; ++i) rev[i] = rev[i >> 1] >> 1 | (i & 1) << (s - 1); const int t = Math::pw(3, (mod - 1) / lim); Wn[lim >> 1] = 1; for (int *i = Wn + 1 + (lim >> 1); i != Wn + lim; ++i) *i = mul(*(i - 1), t); for (int i = lim >> 1; --i; ) Wn[i] = Wn[i << 1]; } inline void INIT(int n) { lim = 1; while (lim < n) lim <<= 1; } inline void FFT(int *A, const int op = 1) { static unsigned long long t[N]; int shift = s - __builtin_ctz(lim); for (int i = 0; i < lim; ++i) t[rev[i] >> shift] = A[i]; for (int mid = 1; mid < lim; mid <<= 1) for (int i = 0; i < lim; i += mid << 1) for (int j = 0; j < mid; ++j) { const unsigned long long Y = t[i + j + mid] * Wn[j + mid] % mod; t[i + j + mid] = t[i + j] - Y + mod, t[i + j] += Y; } for (int i = 0; i < lim; ++i) A[i] = t[i] % mod; if (!op) { const int ilim = Math::inv(lim); for (int *i = A; i != A + lim; ++i) _mul(*i, ilim); std::reverse(A + 1, A + lim); } } void INV(int *A, int *B, int n) { if (n == 1) { *B = Math::inv(*A); return ; } static int C[N], D[N]; const int len = n + 1 >> 1; INV(A, B, len), INIT(len * 3); cpyclr(C, A, n), cpyclr(D, B, len); FFT(C), FFT(D); for (int i = 0; i < lim; ++i) D[i] = (2 - mul(C[i], D[i]) + mod) * D[i] % mod; FFT(D, 0), cpy(B + len, D + len, n - len); } void DIF(int *A, int *B, int n) { B[n - 1] = 0; for (int i = 1; i < n; ++i) B[i - 1] = mul(A[i], i); } void MUL(VI &res, VI P1, VI P2) { static int A[N], B[N]; const int n = P1.size(), m = P2.size(); INIT(n + m - 1); std::copy(P1.begin(), P1.end(), A), clr(A, n, lim); std::copy(P2.begin(), P2.end(), B), clr(B, m, lim); FFT(A), FFT(B); for (int i = 0; i < lim; ++i) _mul(A[i], B[i]); FFT(A, 0); res.assign(A, A + n + m - 1); } int pos[N]; VI P[N << 1]; void DC_FFT(int rt, int l, int r) { if (l == r) { P[rt] = { pos[l], 1 }; return ; } const int mid = l + r >> 1, L = rt << 1, R = rt << 1 | 1; DC_FFT(L, l, mid), DC_FFT(R, mid + 1, r); MUL(P[rt], P[L], P[R]); } namespace Evaluation { int res[N]; VI S[N << 1]; void DIV(int A, int n, int B, int m, int *F) { const int len = n - m + 1; static int C[N], D[N]; std::reverse_copy(S[A].begin(), S[A].end(), C); std::reverse_copy(P[B].begin(), P[B].end(), D); INV(D, F, len), INIT(len << 1); clr(C, len, lim), clr(F, len, lim); FFT(C), FFT(F); for (int i = 0; i < lim; ++i) _mul(F[i], C[i]); FFT(F, 0), std::reverse(F, F + len); } void __DIVMOD(int res, int A, int n, int B, int m) { if (n < m) { S[res].assign(S[A].begin(), S[A].end()); return ; } static int C[N], D[N]; DIV(A, n, B, m, C), INIT(n); std::copy(P[B].begin(), P[B].end(), D); clr(C, n - m + 1, lim), clr(D, m, lim); FFT(C), FFT(D); for (int i = 0; i < lim; ++i) _mul(C[i], D[i]); FFT(C, 0); for (int i = 0; i < m - 1; ++i) reduce(C[i] = S[A][i] - C[i]); S[res].assign(C, C + m - 1); } void DIVMOD(int res, int A) { int n = S[A].size(), m = P[res].size(); __DIVMOD(res, A, n, res, m); } void calc(int rt, int l, int r) { if (l == r) { res[l] = S[rt][0]; return ; } int mid = l + r >> 1; DIVMOD(rt << 1, rt), DIVMOD(rt << 1 | 1, rt); calc(rt << 1, l, mid), calc(rt << 1 | 1, mid + 1, r); } void EVAL(int *f, int n, int m, int *__pos, int *__res) { for (int i = 1; i <= m; ++i) reduce(pos[i] = -__pos[i]); DC_FFT(1, 1, m); S[0].assign(f, f + n), DIVMOD(1, 0); calc(1, 1, m), cpy(__res + 1, res + 1, m); } void EVAL_for_INTER(int *f, int n, int m, int *__res) { S[0].assign(f, f + n), DIVMOD(1, 0); calc(1, 1, m), cpy(__res + 1, res + 1, m); } } using Evaluation::EVAL_for_INTER; using Evaluation::EVAL; namespace Interpolation { int g[N], Y[N]; VI S[N << 1]; void calc(int rt, int l, int r) { if (l == r) { S[rt] = { static_cast<int> mul(Y[l], Math::inv(g[l])) }; return ; } const int mid = l + r >> 1, L = rt << 1, R = rt << 1 | 1; calc(L, l, mid), calc(R, mid + 1, r); static VI t; MUL(S[rt], S[L], P[R]), MUL(t, S[R], P[L]); for (int i = 0; i <= r - l; ++i) reduce(S[rt][i] += t[i] - mod); } void INTER(int *X, int *__Y, int n, int *res) { static int C[N], D[N]; for (int i = 1; i <= n; ++i) reduce(pos[i] = -X[i]), Y[i] = __Y[i]; DC_FFT(1, 1, n), std::copy(P[1].begin(), P[1].end(), C); DIF(C, D, n + 1), EVAL_for_INTER(D, n, n, g); calc(1, 1, n), std::copy(S[1].begin(), S[1].end(), res); } } using Interpolation::INTER; #undef N } int n, X[maxn], Y[maxn], res[maxn]; int main() { std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0); std::cin >> n; Poly::FFTINIT(n + n); for (int i = 1; i <= n; ++i) std::cin >> X[i] >> Y[i]; Poly::INTER(X, Y, n, res); for (int i = 0; i < n; ++i) std::cout << res[i] << ' '; std::cout << ' '; return 0; }