zoukankan      html  css  js  c++  java
  • [洛谷P3195][HNOI2008]玩具装箱TOY

    题目大意:有n个物体,大小为$c_i$。把第i个到第j个放到一起,容器的长度为$x=j-i+sumlimits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$。费用最小.

    题解:

    $$令:a_i=sumlimits_{i=1}^{i} c_i$$

    $$dp_i=min(dp_j+(a_i+i-a_j-j-L-1)^2)$$

    $$(以下称两点斜率为 slope(A,B) )$$

    $$令:b_j=a_i+i,d_i=b_i+i+L+1$$

    $$ herefore dp_i=dp_j+(b_i-d_j)^2$$

    $$展开得:2a_i cdot b_j+dp_i-a_i^2=dp_j+b_j^2$$

    $$令:x_i=2b_i,y_i=dp_i+2b_i^2$$

    斜率优化

    卡点:

    C++ Code:

    #include<cstdio>
    using namespace std;
    long long c[50010],f[50010],n,l;
    int q[50010],h,t,tmp;
    long long pw(long long i){return i*i;}
    long long getb(int i){return c[i]+i;}
    long long getd(int i){return getb(i)-l-1;}
    long long getx(int i){return getb(i)*2;}
    long long gety(int i){return f[i]+pw(getb(i));}
    double slope(int a,int b){
    	return double(gety(a)-gety(b))/double(getx(a)-getx(b));
    }
    int main(){
    	scanf("%lld%lld",&n,&l);
    	for (int i=1;i<=n;i++)scanf("%lld",&c[i]),c[i]+=c[i-1];
    	for (int i=1;i<=n;i++){
    		while (h<t&&slope(q[h],q[h+1])<=getd(i))h++;
    		tmp=q[h];
    		f[i]=f[tmp]+pw(getd(i)-getb(tmp));
    		while (h<t&&slope(q[t-1],q[t])>=slope(q[t],i))t--;
    		q[++t]=i;
    	}
    	printf("%lld
    ",f[n]);
    	return 0;
    } 
    

      

  • 相关阅读:
    Riverside Curio
    bzoj1010 [HNOI2008]玩具装箱toy
    bzoj1898 [Zjoi2005]Swamp 沼泽鳄鱼
    hdu 5435 A serious math problem
    poj2411 Mondriaan's Dream
    bzoj3450 Tyvj1952 Easy
    关于欧拉函数与莫比乌斯函数等一系列积性函数的线性筛
    NOIP后一波总结
    回忆一下电子科技大学春令营
    【算法】背包九讲
  • 原文地址:https://www.cnblogs.com/Memory-of-winter/p/9173752.html
Copyright © 2011-2022 走看看