zoukankan      html  css  js  c++  java
  • [洛谷 P2365] 任务安排 (线性dp)

    3月14日第二题!!
    题目描述
    N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

    例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。

    输入输出格式
    输入格式:
    第一行是N(1<=N<=5000)。

    第二行是S(0<=S<=50)。

    下面N行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。

    输出格式:
    一个数,最小的总费用。

    输入输出样例
    输入样例:
    5
    1
    1 3
    3 2
    4 3
    2 3
    1 4
    输出样例:
    153

    一上来先把n^3写出来
    f[i][j] 表示前i个分j批的最小花费
    code:

    //By Menteur_Hxy
    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    
    const int MAX=5010;
    const int INF=0x3f3f3f3f;
    int n,s,minn=INF;
    int ti[MAX],fi[MAX],f[MAX][MAX];
    
    int main() {
        scanf("%d %d",&n,&s);
        for(int i=1;i<=n;i++) {
            scanf("%d %d",&ti[i],&fi[i]);
            ti[i]+=ti[i-1];fi[i]+=fi[i-1];
    //      cout<<ti[i]<<" "<<fi[i]<<endl;
        }
        memset(f,0x3f,sizeof f);
        f[0][0]=0;
        for(int i=1;i<=n;i++) 
            for(int j=1;j<=i;j++) {
                for(int k=0;k<i;k++){
                    f[i][j]=min(f[i][j],f[k][j-1]+(s*j+ti[i])*(fi[i]-fi[k]));
                }
            }
        for(int i=1;i<=n;i++) minn=min(minn,f[n][i]);
        printf("%d",minn);
        return 0;
    }

    n=5000,嗯好像过不了。
    考虑升级成n^2 发现可以把批数忽略掉
    只需要提前加上后面多出的花费即可。

    code:

    //By Menteur_Hxy
    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    
    const int MAX=5010;
    const int INF=0x3f3f3f3f;
    int n,s;
    int ti[MAX],fi[MAX],f[MAX];
    
    int main() {
        scanf("%d %d",&n,&s);
        for(int i=1;i<=n;i++) {
            scanf("%d %d",&ti[i],&fi[i]);
            ti[i]+=ti[i-1];fi[i]+=fi[i-1];
        }
        memset(f,0x3f,sizeof f);
        f[0]=0;
        for(int i=1;i<=n;i++) 
            for(int j=0;j<i;j++) {
                f[i]=min(f[i],f[j]+ti[i]*(fi[i]-fi[j])+s*(fi[n]-fi[j]));
            }
        printf("%d",f[n]);
        return 0;
    }

    搞定收工233~。

    版权声明:本文为博主原创文章,未经博主允许不得转载。 博主:https://www.cnblogs.com/Menteur-Hxy/
  • 相关阅读:
    未解
    HDU 4642 Fliping game 解题报告
    HDU 4639 Hehe 解题报告
    深入浅出Node.js (11)
    JS文本框获取焦点
    深入理解 BFC
    JS 中函数名后面加与不加括号的区别
    ES6 箭头函数
    sublime 格式化代码
    <!--more-->搭建的博客设置主页内容高度
  • 原文地址:https://www.cnblogs.com/Menteur-Hxy/p/9248004.html
Copyright © 2011-2022 走看看