zoukankan      html  css  js  c++  java
  • sklearn正规化(Normalization或者scale)

    from sklearn import preprocessing
    import numpy as np
    
    a = np.array([[10,2.7,3.6],[-100,5,-2],[120,20,40]],dtype=np.float64)
    print(a)
    print(preprocessing.scale(a))

    from sklearn import preprocessing
    import numpy as np
    from sklearn.cross_validation import  train_test_split
    from sklearn.datasets.samples_generator import  make_classification
    from sklearn.svm import SVC
    import matplotlib.pyplot as plt
    # a = np.array([[10,2.7,3.6],[-100,5,-2],[120,20,40]],dtype=np.float64)
    # print(a)
    # print(preprocessing.scale(a))
    X,Y = make_classification(n_samples=300,n_features=2,n_redundant=0,n_informative=2,random_state=22, n_clusters_per_class=1, scale=100)
    # plt.scatter(X[:, 0], X[:, 1], c=Y)
    # plt.show()
    #X=preprocessing.scale(X)
    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)
    clf = SVC()
    clf.fit(X_train, y_train)
    print(clf.score(X_test, y_test))

    from sklearn import preprocessing
    import numpy as np
    from sklearn.cross_validation import  train_test_split
    from sklearn.datasets.samples_generator import  make_classification
    from sklearn.svm import SVC
    import matplotlib.pyplot as plt
    # a = np.array([[10,2.7,3.6],[-100,5,-2],[120,20,40]],dtype=np.float64)
    # print(a)
    # print(preprocessing.scale(a))
    X,Y = make_classification(n_samples=300,n_features=2,n_redundant=0,n_informative=2,random_state=22, n_clusters_per_class=1, scale=100)
    # plt.scatter(X[:, 0], X[:, 1], c=Y)
    # plt.show()
    X=preprocessing.scale(X)
    X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)
    clf = SVC()
    clf.fit(X_train, y_train)
    print(clf.score(X_test, y_test))

  • 相关阅读:
    P1361 小M的作物 【网络流】【最小割】
    餐巾计划问题 【网络流24题】【费用流】【zkw】
    P1231 教辅的组成 【网络流】【最大流】
    Rikka with coin 思维题
    线段树模板新
    AC自动机 洛谷P3966 单词
    AC自动机 洛谷P5357 模板
    AC自动机 洛谷P3796
    AC自动机 洛谷P3808 模板
    KMP 洛谷P3375
  • 原文地址:https://www.cnblogs.com/Michael2397/p/7995049.html
Copyright © 2011-2022 走看看