zoukankan      html  css  js  c++  java
  • sklearn解决过拟合的例子

    Learning curve 检视过拟合

    sklearn.learning_curve 中的 learning curve 可以很直观的看出我们的 model 学习的进度, 对比发现有没有 overfitting 的问题. 然后我们可以对我们的 model 进行调整, 克服 overfitting 的问题.

    # View more python learning tutorial on my Youtube and Youku channel!!!
    
    # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg
    # Youku video tutorial: http://i.youku.com/pythontutorial
    
    """
    Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
    """
    from __future__ import print_function
    from sklearn.learning_curve import  learning_curve
    from sklearn.datasets import load_digits
    from sklearn.svm import SVC
    import matplotlib.pyplot as plt
    import numpy as np
    
    digits = load_digits()
    X = digits.data
    y = digits.target
    train_sizes, train_loss, test_loss= learning_curve(
            SVC(gamma=0.01), X, y, cv=10, scoring='mean_squared_error',
            train_sizes=[0.1, 0.25, 0.5, 0.75, 1])
    train_loss_mean = -np.mean(train_loss, axis=1)
    test_loss_mean = -np.mean(test_loss, axis=1)
    
    plt.plot(train_sizes, train_loss_mean, 'o-', color="r",
                 label="Training")
    plt.plot(train_sizes, test_loss_mean, 'o-', color="g",
                 label="Cross-validation")
    
    plt.xlabel("Training examples")
    plt.ylabel("Loss")
    plt.legend(loc="best")
    plt.show()

    validation_curve 检视过拟合

     用这一种曲线我们就能更加直观看出改变模型中的参数的时候有没有过拟合(overfitting)的问题了. 这也是可以让我们更好的选择参数的方法.

    from sklearn.learning_curve import validation_curve #学习曲线模块
    from sklearn.datasets import load_digits #digits数据集
    from sklearn.svm import SVC #Support Vector Classifier
    import matplotlib.pyplot as plt #可视化模块
    import numpy as np
    
    digits = load_digits()
    X = digits.data
    y = digits.target
    #建立参数测试集
    param_range = np.logspace(-6, -2.3, 5)
    #使用validation_curve快速找出参数对模型的影响
    train_loss, test_loss = validation_curve(
        SVC(), X, y, param_name='gamma', param_range=param_range, cv=10, scoring='mean_squared_error')
    
    train_loss_mean = -np.mean(train_loss, axis=1)
    test_loss_mean = -np.mean(test_loss, axis=1)
    
    #可视化图形
    plt.plot(param_range, train_loss_mean, 'o-', color="r",
             label="Training")
    plt.plot(param_range, test_loss_mean, 'o-', color="g",
            label="Cross-validation")
    
    plt.xlabel("gamma")
    plt.ylabel("Loss")
    plt.legend(loc="best")

     

  • 相关阅读:
    C++---const
    qt--textEdit多行文本编辑框
    qt--QByteArray字节数组
    qt5--拖放
    qt5--自定义事件与事件的发送
    qt5--键盘事件
    qt5--鼠标事件
    qt5-事件过滤器
    qt5-event事件的传递
    qt-事件的接受和忽略
  • 原文地址:https://www.cnblogs.com/Michael2397/p/7995338.html
Copyright © 2011-2022 走看看