zoukankan      html  css  js  c++  java
  • 多项式全家桶

    Include

    多项式乘法(* *=)

    多项式求逆(~  Inv)

    多项式除法(/)

    多项式取模(%)

    多项式对数函数(Ln)

    多项式指数函数(Exp)

    多项式正弦函数(Cos)

    多项式余弦函数(Sin)

    upda:2019.4.28:

    对于任意模数NTT全部适用。

    位于:namespace FastFourierTransform

    开启方法:

    1.取消注释 using namespace FastFourierTransform;

    2.把//dele start here/* 到// delete end here */ 删除或者注释掉。

    或者,直接把'/*'敲回车打下去即可。

    后面的乘法和求逆都直接调用FastFourierTransform中内置的了。

    #include<bits/stdc++.h>
    #define reg register int
    #define il inline
    #define fi first
    #define se second
    #define mk(a,b) make_pair(a,b)
    #define numb (ch^'0')
    using namespace std;
    typedef long long ll;
    template<class T>il void rd(T &x){
        char ch;x=0;bool fl=false;
        while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
        for(x=numb;isdigit(ch=getchar());x=x*10+numb);
        (fl==true)&&(x=-x);
    }
    template<class T>il void output(T x){if(x/10)output(x/10);putchar(x%10+'0');}
    template<class T>il void ot(T x){if(x<0) putchar('-'),x=-x;output(x);putchar(' ');}
    template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('
    ');}
    //--------------------------------------------------------------------------------------------------------------------//
    namespace Miracle{
    const int mod;
    const int G=3;
    const int GI=332748118;
    const int I=86583718;
    const int iv2=499122177;
    const double Pi=acos(-1);
    il int qm(int x,int y){int ret=1;while(y){if(y&1) ret=(ll)ret*x%mod;x=(ll)x*x%mod;y>>=1;}return ret;}
    il int ad(int x,int y){return x+y>=mod?x+y-mod:x+y;}
    il int sub(int x,int y){return ad(x,mod-y);}
    il int mul(int x,int y){return (ll)x*y%mod;}
    namespace Polynomial{
    struct Poly{
        vector<int>f;
        Poly(){f.clear();}
        il int &operator[](const int &x){return f[x];}
        il const int &operator[](const int &x) const {return f[x];}
        il void resize(const int &n){f.resize(n);}
        il int size() const {return f.size();}
        il void cpy(Poly &b){f.resize(b.size());for(reg i=0;i<(int)f.size();++i)f[i]=b[i];}
        il void rev(){reverse(f.begin(),f.end());}
        il void clear(){f.clear();}
        il void read(const int &n){f.resize(n);for(reg i=0;i<n;++i)rd(f[i]);}
        il void out() const {for(reg i=0;i<(int)f.size();++i)ot(f[i]);putchar('
    ');}
    }R;
    il int init(const int &n){int m;for(m=1;m<n;m<<=1);return m;}
    template<class T>il void rev(T &f){
        int lp=f.size();
        if(R.size()!=f.size()) {
            R.resize(f.size());
            for(reg i=0;i<lp;++i){
                R[i]=(R[i>>1]>>1)|((i&1)?lp>>1:0);
            }
        }
        for(reg i=0;i<lp;++i){
            if(i<R[i]) swap(f[i],f[R[i]]);
        }
    }
    }
    using namespace Polynomial;
    //--------------------------------------------------------------------------------------------------------------------//
    il void operator +=(Poly &f,const Poly &g){for(reg i=0;i<f.size();++i) f[i]=ad(f[i],g[i]);}
    il void operator +=(Poly &f,const int &c){f[0]=ad(f[0],c);}
    il Poly operator +(Poly f,const Poly &g){for(reg i=0;i<f.size();++i) f[i]=ad(f[i],g[i]);return f;}
    il Poly operator +(Poly f,const int &c){f[0]=ad(f[0],c);return f;}
    il void operator -=(Poly &f,const Poly &g){for(reg i=0;i<f.size();++i) f[i]=sub(f[i],g[i]);}
    il void operator -=(Poly &f,const int &c){f[0]=sub(f[0],c);}
    il Poly operator -(Poly f,const Poly &g){for(reg i=0;i<f.size();++i) f[i]=sub(f[i],g[i]);return f;}
    il Poly operator -(Poly f,const int &c){f[0]=sub(f[0],c);return f;}
    il Poly operator -(Poly f){for(reg i=0;i<f.size();++i) f[i]=mod-f[i];return f;}
    //--------------------------------------------------------------------------------------------------------------------//
    namespace FastFourierTransform{
    struct cplx{
        double x,y;
        cplx(){x=0.0;y=0.0;}
        cplx(double xx,double yy){x=xx;y=yy;}
        cplx friend operator !(cplx a){return cplx(a.x,-a.y);}
        cplx friend operator +(cplx a,cplx b){return cplx(a.x+b.x,a.y+b.y);}
        cplx friend operator -(cplx a,cplx b){return cplx(a.x-b.x,a.y-b.y);}
        cplx friend operator *(cplx a,cplx b){return cplx(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
    };
    struct Cps{
        vector<cplx>f;
        Cps(){f.clear();}
        il cplx &operator[](const int &x){return f[x];}
        il const cplx &operator[](const int &x) const {return f[x];}
        il void resize(const int &n){f.resize(n);}
        il int size() const {return f.size();}
        il void cpy(Cps &b){f.resize(b.size());for(reg i=0;i<(int)f.size();++i)f[i]=b[i];}
        il void rev(){reverse(f.begin(),f.end());}
        il void clear(){f.clear();}
        il void out(){
            for(reg i=0;i<(int)f.size();++i){
                cout<<"("<<f[i].x<<","<<f[i].y<<") ";
            }cout<<endl;
        }
    }W;
    il void FFT(Cps &f,int c){
        int n=f.size();rev(f);
        for(reg p=2;p<=n;p<<=1){
            int len=p/2;
            for(reg l=0;l<n;l+=p){
                for(reg k=l;k<l+len;++k){
                    cplx tmp=f[k+len]*(c>0?W[n/p*(k-l)]:!W[n/p*(k-l)]);
                    f[k+len]=f[k]-tmp;
                    f[k]=f[k]+tmp;
                }
            }
        }
        if(c==-1){
            for(reg i=0;i<n;++i){
                f[i].x/=n;f[i].y/=n;
            }
        }
    }
    il void prework(int n){
        if(W.size()!=n){
            W.resize(n);
            for(reg i=0;i<n;++i){
                W[i]=cplx(cos(2*Pi/n*i),sin(2*Pi/n*i));
            }
        }
    }
    il Poly MTT(const Poly &F,const Poly &G,const int &P){
        int n=F.size(),m=G.size();
        Cps a,b,c,d;
        int len=init(n+m-1);
        a.resize(len);b.resize(len);
        c.resize(len);d.resize(len);
        for(reg i=0;i<n;++i){
            a[i].x=F[i]>>15;a[i].y=F[i]&32767;
        }
        for(reg i=0;i<m;++i){
            b[i].x=G[i]>>15;b[i].y=G[i]&32767;
        }
        prework(len);
        FFT(a,1);FFT(b,1);
        cplx ka,kb,ba,bb;
        cplx aaa=cplx(0.5,0),bbb=cplx(0,-0.5),o=cplx(0,1);
        for(reg i=0;i<len;++i){
            int j=(len-i)%len;
            ka=(a[i]+!a[j])*aaa;ba=(a[i]-!a[j])*bbb;
            kb=(b[i]+!b[j])*aaa;bb=(b[i]-!b[j])*bbb;
            c[i]=ka*kb+ba*kb*o;
            d[i]=bb*ka+bb*ba*o;
        }
        FFT(c,-1);FFT(d,-1);
        Poly ret;
        ret.resize(n+m-1);
        for(reg i=0;i<n+m-1;++i){
            ll A=(ll)(c[i].x+0.5)%P,B=(ll)(c[i].y+0.5)%P;
            ll C=(ll)(d[i].x+0.5)%P,D=(ll)(d[i].y+0.5)%P;
            ret[i]=((((A<<30)%P)+((B+C)<<15)%P)%P+D)%P;
        }
        return ret;
    }
    il void operator *=(Poly &f,Poly g){
        f=MTT(f,g,mod);
    }
    il void operator *=(Poly &f,const int &c){for(reg i=0;i<f.size();++i) f[i]=mul(f[i],c);}
    il Poly operator *(Poly f,const Poly &g){f*=g;return f;}
    il Poly operator *(Poly f,const int &c){for(reg i=0;i<f.size();++i) f[i]=mul(f[i],c);return f;}
    il Poly Inv(const Poly &f,int n){
        if(n==1){
            Poly g;g.resize(1);g[0]=qm(f[0],mod-2);return g;
        }
        Poly h=Inv(f,(n+1)>>1);
        Poly tmp=h,t;
        t.resize(n);
        for(reg i=0;i<n;++i) t[i]=f[i];
        tmp=tmp*tmp*t;
        h.resize(tmp.size());
        Poly g=h*2-tmp;
        g.resize(n);
        return g;
    }
    }
    // using namespace FastFourierTransform;
    //--------------------------------------------------------------------------------------------------------------------//
    // dele start here/*
    il void NTT(Poly &f,int c){
        int n=f.size();rev(f);
        for(reg p=2;p<=n;p<<=1){
            int gen=(c==1)?qm(G,(mod-1)/p):qm(GI,(mod-1)/p);
            for(reg l=0;l<n;l+=p){
                int buf=1;
                for(reg k=l;k<l+p/2;++k){
                    int tmp=mul(f[k+p/2],buf);
                    f[k+p/2]=sub(f[k],tmp);
                    f[k]=ad(f[k],tmp);
                    buf=mul(buf,gen);
                }
            }
        }
        if(c==-1){
            int iv=qm(n,mod-2);for(reg i=0;i<n;++i) f[i]=mul(f[i],iv);
        }
    }
    il Poly Inv(const Poly &f,int n){
        if(n==1){
            Poly g;g.resize(1);g[0]=qm(f[0],mod-2);return g;
        }
        Poly g=Inv(f,(n+1)>>1),t;
        int m=init(n*2);
        t.resize(m);
        for(reg i=0;i<n;++i)t[i]=f[i];
        g.resize(m);
        NTT(g,1);NTT(t,1);
        for(reg i=0;i<m;++i)g[i]=mul(sub(2,mul(g[i],t[i])),g[i]);
        NTT(g,-1);g.resize(n);
        return g;
    }
    il void operator *=(Poly &f,Poly g){
        int st=f.size()+g.size()-1;
        int len=init(f.size()+g.size()-1);f.resize(len);g.resize(len);
        NTT(f,1);NTT(g,1);for(reg i=0;i<len;++i) f[i]=mul(f[i],g[i]);
        NTT(f,-1);
        f.resize(st);
    }
    il void operator *=(Poly &f,const int &c){for(reg i=0;i<f.size();++i) f[i]=mul(f[i],c);}
    il Poly operator *(Poly f,const Poly &g){f*=g;return f;}
    il Poly operator *(Poly f,const int &c){for(reg i=0;i<f.size();++i) f[i]=mul(f[i],c);return f;}
    // delete end here*/
    il Poly operator ~(const Poly &f){return Inv(f,f.size());}
    il Poly operator /(Poly f,Poly g){int len=f.size()-g.size()+1;f.rev();g.rev();g.resize(len);f=f*(~g);f.resize(len);f.rev();return f;}
    il Poly operator %(Poly f,Poly g){Poly s=f/g;f=f-g*s;f.resize(g.size()-1);return f;}
    //--------------------------------------------------------------------------------------------------------------------//
    il Poly Inter(Poly f){int st=f.size();f.resize(st+1);for(reg i=st;i>=1;--i){f[i]=mul(f[i-1],qm(i,mod-2));}f[0]=0;return f;}
    il Poly Diff(Poly f){int st=f.size();for(reg i=0;i<st-1;++i) f[i]=mul(f[i+1],(i+1));f.resize(st-1);return f;}
    il Poly Ln(const Poly &f){Poly g=Diff(f),h=(~f);g=g*h;g.resize(f.size()-1);return Inter(g);}
    il Poly Exp(const Poly &f,int n){
        if(n==1){
            Poly g;g.resize(1);g[0]=1;
            return g;
        }
        Poly g=Exp(f,(n+1)>>1);
        g.resize(n);
        g=g*(((Ln(g)*(mod-1))+1)+f);
        g.resize(n);
        return g;
    }
    il Poly Exp(const Poly &f){
        return Exp(f,f.size());
    }
    il Poly Cos(const Poly &f){
        Poly g=Exp(f*I);return (g+(~g))*iv2;
    }
    il Poly Sin(const Poly &f){
        Poly g=Exp(f*I);return (g-(~g))*qm(ad(I,I),mod-2);
    }
    int main(){
        
        return 0;
    }
    
    }
    signed main(){
        Miracle::main();
        return 0;
    }
    
    /*
       Author: *Miracle*
       Date: 2019/4/8 18:57:00
    */

    持(yi)续(ding)更(bu)新(gu)~

  • 相关阅读:
    为什么我会认为SAP是世界上最好用最牛逼的ERP系统,没有之一?
    被公司的垃圾XG人事系统吓尿了
    【域控管理】父域的搭建
    【域控管理】域控的必要性
    对.net 程序进行源码混淆
    公司消费一卡通“变法”记
    Oracle研究专题:Oracle系统安装与配置
    数据仓库003
    数据仓库002
    数据仓库001
  • 原文地址:https://www.cnblogs.com/Miracevin/p/10674814.html
Copyright © 2011-2022 走看看