题目链接:https://www.luogu.org/problemnew/show/P3623
说是对克鲁斯卡尔的透彻性理解
正解:
先考虑加入水泥路,然后再考虑加入剩下必须要加入的最少鹅卵石路。
之后对原图再跑最小生成树
先跑鹅卵石路到k条。
再从所有水泥路中直到成为最小生成树。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 100000 + 10;
int n, m, k, fa[maxn], cnt, shuini, eluan, tot;
bool f[maxn];
struct edge{
int u, v, w;
}e[maxn<<2], ans[maxn<<2];
bool cmp(edge a, edge b)
{
return a.w < b.w;
}
int find(int x)
{
return fa[x] == x ? x : fa[x] = find(fa[x]);
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i = 1; i <= n; i++) fa[i] = i;
for(int i = 1; i <= m; i++)
{
int opt;
scanf("%d%d%d",&e[i].u, &e[i].v, &opt);
if(opt == 0) e[i].w = 1, eluan++;
else e[i].w = 0, shuini++;
}
if(eluan < k)
{
cout<<"no solution
";
return 0;
}
sort(e+1, e+1+m, cmp);
for(int i = 1; i <= shuini; i++)
{
if(cnt == n-1) break;
int rx, ry;
rx = find(e[i].u), ry = find(e[i].v);
if(rx != ry)
{
fa[ry] = rx;
cnt++;
}
}
int eluanmust = 0;
for(int i = shuini+1; i <= m; i++)
{
if(cnt == n-1) break;
int rx, ry;
rx = find(e[i].u), ry = find(e[i].v);
if(rx != ry)
{
fa[ry] = rx;
f[i] = 1, eluanmust++;
cnt++;
}
}
if(cnt != n-1 || eluanmust > k)
{
cout<<"no solution
";
return 0;
}
for(int i = 1; i <= n; i++) fa[i] = i;
cnt = 0;
for(int i = shuini+1; i <= m; i++)
{
if(cnt == n-1) break;
if(f[i] == 1)
{
int rx, ry;
rx = find(e[i].u), ry = find(e[i].v);
fa[ry] = rx;
cnt++;
ans[++tot].u = e[i].u;
ans[tot].v = e[i].v;
ans[tot].w = e[i].w^1;
//printf("%d %d %d
",e[i].u, e[i].v, e[i].w^1);
}
}
for(int i = shuini+1; i <= m; i++)
{
if(cnt == k) break;
int rx, ry;
rx = find(e[i].u), ry = find(e[i].v);
if(rx != ry)
{
fa[ry] = rx;
cnt++;
ans[++tot].u = e[i].u;
ans[tot].v = e[i].v;
ans[tot].w = e[i].w^1;
//printf("%d %d %d
",e[i].u, e[i].v, e[i].w^1);
}
}
if(cnt < k)
{
cout<<"no solution
";
return 0;
}
for(int i = 1; i <= shuini; i++)
{
if(cnt == n-1) break;
int rx, ry;
rx = find(e[i].u), ry = find(e[i].v);
if(rx != ry)
{
fa[ry] = rx;
cnt++;
ans[++tot].u = e[i].u;
ans[tot].v = e[i].v;
ans[tot].w = e[i].w^1;
//printf("%d %d %d
",e[i].u, e[i].v, e[i].w^1);
}
}
if(cnt != n-1)
{
cout<<"no solution
";
return 0;
}
for(int i = 1; i <= tot; i++)
printf("%d %d %d
",ans[i].u, ans[i].v, ans[i].w);
return 0;
}