zoukankan      html  css  js  c++  java
  • Digital Roots

    Digital Roots

     

    Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

    题目描述

    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.
     
    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

    输入

    The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.

    输出

    For each integer in the input, output its digital root on a separate line of the output.

    示例输入

    24
    39
    0

    示例输出

    6
    3

    提示

    请注意,输入数据长度不超过20位数字。

    来源

    Greater New York 2000
    面向对数据结构和算法不是太懂的同学

    示例程序

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    int main()
    {
        int i,len,j;
        int num[25],a=0;
        char  st[25];
        while(scanf("%s",st),st[0]!='0')
        {
            if(st=='0') break;
            memset(num,0,sizeof(num));
            len=strlen(st);
            for(i=0;i<len;i++)
                num[i]=st[i]-'0';
            for(j=0;j<i;j++)
            {
                  a=a+num[j];
            }
            while(a>9)
            {
                a=a/10+a%10;
            }
            printf("%d
    ",a);
            a=0;
        }
        return 0;
    }
    

      

  • 相关阅读:
    GOF23设计模式汇总
    获取表单提交MVC错误信息
    Spring.Net
    简单工厂、工厂方法和抽象工厂
    Json和JsonP
    mysql8无法用navicat连接(mysql8加密方式的坑)
    (4.16)mysql备份还原——物理备份之XtraBackup实践
    mysql如何下载历史版本?
    如何测试端口通不通(四种方法)
    linux移动复制删除命令
  • 原文地址:https://www.cnblogs.com/Misty5/p/3920441.html
Copyright © 2011-2022 走看看