zoukankan      html  css  js  c++  java
  • Digital Roots

    Digital Roots

     

    Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

    题目描述

    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.
     
    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

    输入

    The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.

    输出

    For each integer in the input, output its digital root on a separate line of the output.

    示例输入

    24
    39
    0

    示例输出

    6
    3

    提示

    请注意,输入数据长度不超过20位数字。

    来源

    Greater New York 2000
    面向对数据结构和算法不是太懂的同学

    示例程序

    #include <stdio.h>
    #include <stdlib.h>
    #include <string.h>
    
    int main()
    {
        int i,len,j;
        int num[25],a=0;
        char  st[25];
        while(scanf("%s",st),st[0]!='0')
        {
            if(st=='0') break;
            memset(num,0,sizeof(num));
            len=strlen(st);
            for(i=0;i<len;i++)
                num[i]=st[i]-'0';
            for(j=0;j<i;j++)
            {
                  a=a+num[j];
            }
            while(a>9)
            {
                a=a/10+a%10;
            }
            printf("%d
    ",a);
            a=0;
        }
        return 0;
    }
    

      

  • 相关阅读:
    10106 Product
    枚举值不占对象空间
    编译器会强制没有数据成员的对象长度非零
    对象切片与虚函数机制
    私有继承成员的公有化
    2013年开发者需要了解的开发趋势和技能
    redis 入门笔记
    Tomcat的异步通讯配置使用NIO
    如何成为“10倍效率的开发者”
    如何安装Node.js
  • 原文地址:https://www.cnblogs.com/Misty5/p/3920441.html
Copyright © 2011-2022 走看看