zoukankan      html  css  js  c++  java
  • 可视化库Seaborn基本操作1/2

    python-3.7   pycharm   serborn-0.9.0

    """
        可视化库Seaborn
        时间:2018913 0013
        分析图绘制,Seaborn封装自Matplotlib
    """
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from scipy import stats, integrate
    import seaborn as sns
    
    sns.set(color_codes = True)
    np.random.seed(sum(map(ord, 'distributions')))
    print("""
    -------------------单变量分析绘图--------------------------------------
    ---------------------------------------------------------------
    """)
    x = np.random.normal(size = 100)
    sns.distplot(x, kde = True)  # 直方图,kde密度曲线
    plt.show()
    sns.distplot(x, bins = 20, kde = True)  # 切分成20个小块
    plt.show()
    x = np.random.gamma(6, size = 200)
    sns.distplot(x, bins = 20, kde = False, fit = stats.gamma)  # 传入统计指标
    plt.show()
    
    print("""
    -------------------二维分析绘图--------------------------------------
    -------------------------------散点图--------------------------
    """)
    mean, cov = [0, 1], [(1, 0.5), (0.5, 1)]
    data = np.random.multivariate_normal(mean, cov, 200)
    df = pd.DataFrame(data, columns = ['x', 'y'])
    print(df)
    sns.jointplot(x = 'x', y = 'y', data = df)
    plt.show()
    
    x, y = np.random.multivariate_normal(mean, cov, 1000).T
    with sns.axes_style('white'):
        sns.jointplot(x = x, y = y, kind = 'hex', color = 'blue')
    plt.show()
    
    iris = sns.load_dataset('iris')
    sns.pairplot(iris)
    plt.show()
    
    print("""
    -------------------回归分析图--------------------------------------
    --------------------------regplot(),lmplot()推荐使用regplot()-------------------------------
    """)
    tips = sns.load_dataset('tips')
    print(tips.head())
    
    sns.regplot(x = 'total_bill', y = 'tip', data = tips)  # x轴,y轴,数据DataFrame
    plt.show()
    
    sns.lmplot(x = 'total_bill', y = 'tip', data = tips)
    plt.show()
    
    sns.regplot(x = 'size', y = 'tip', data = tips)
    plt.show()
    
    sns.regplot(x = 'size', y = 'tip', data = tips, x_jitter = 0.05)  # x加入抖动0.05
    plt.show()
    
    print("""
    -------------------多变量分析图--------------------------------------
    --------------------------stripplot(),swarmplot()-------------------------------
    """)
    titanic = sns.load_dataset('titanic')
    sns.stripplot(x = 'day', y = 'total_bill', data = tips, jitter = False)
    plt.show()
    
    sns.stripplot(x = 'day', y = 'total_bill', data = tips, jitter = True)  # 左右摆动
    plt.show()
    
    sns.swarmplot(x = 'day', y = 'total_bill', data = tips)
    plt.show()
    
    sns.swarmplot(x = 'day', y = 'total_bill', data = tips, hue = 'sex')  # 指标
    plt.show()
    
    print("""
    -------------------盒图--------------------------------------
    --------------------------boxplot()-------------------------------
    """)
    sns.boxplot(x = 'day', y = 'total_bill', data = tips, hue = 'time')  # orient = h横着画
    plt.show()
    
    print("""
    -------------------小提琴图--------------------------------------
    --------------------------violinplot()-------------------------------
    """)
    sns.violinplot(x = 'day', y = 'total_bill', data = tips, hue = 'time')
    plt.show()
    
    sns.violinplot(x = 'day', y = 'total_bill', data = tips, hue = 'time', split = True)
    plt.show()
    
    print("""
    -------------------组合图--------------------------------------
    --------------------------violinplot()-------------------------------
    """)
    sns.violinplot(x = 'day', y = 'total_bill', data = tips, hue = 'time')
    sns.swarmplot(x = 'day', y = 'total_bill', data = tips, hue = 'time', color = 'w', alpha = 0.5)
    plt.show()
    
    print("""
    -------------------柱状图--------------------------------------
    --------------------------barplot()-------------------------------
    """)
    sns.barplot(x = 'sex', y = 'survived', hue = 'class', data = titanic)
    plt.show()
    
    print("""
    -------------------点状差异图--------------------------------------
    --------------------------barplot()-------------------------------
    """)
    sns.pointplot(x = 'sex', y = 'survived', hue = 'class', data = titanic)
    plt.show()
    
    sns.pointplot(x = 'class', y = 'survived', hue = 'sex', data = titanic,
                  palette = {'male': 'g', 'female': "m"},
                  markers = ['^', 'o'],
                  linestyles = ['-', '--'])
    
    plt.show()
    
    print("""
    -------------------多层面板分类图--------------------------------------
    --------------------------catplot()-------------------------------
    """)
    sns.catplot(x = 'day', y = 'total_bill', data = tips, hue = 'smoker')
    plt.show()
    sns.catplot(x = 'day', y = 'total_bill', data = tips, hue = 'smoker', kind = 'bar')
    plt.show()
    sns.catplot(x = 'day', y = 'total_bill', data = tips, hue = 'smoker', col = 'time', kind = 'swarm')
    plt.show()
    sns.catplot(x = 'day', y = 'total_bill', data = tips, hue = 'smoker', col = 'day', kind = 'box', height = 4, width = 5)
    # 大小是4,长宽比是5
    plt.show()

    运行结果

  • 相关阅读:
    ajax_注册
    mysql 二
    mysql基础
    django数据库批量创建
    私有属性
    mysql操作
    @property @classmethod @staticmethod
    python中的__new__方法
    员工信息表-装逼版
    三级菜单
  • 原文地址:https://www.cnblogs.com/Mjerry/p/9638370.html
Copyright © 2011-2022 走看看