zoukankan      html  css  js  c++  java
  • 002-TensorFlow基础

    基本概念实操:

    import tensorflow as tf
    #创建一个常量op
    m1 = tf.constant([[3,3]])
    #创建一个常量op
    m2 = tf.constant([[2],[3]])
    #创建一个矩阵乘法op,把m1和m2传入
    product = tf.matmul(m1,m2)
    print(product)
    
    Tensor("MatMul:0", shape=(1, 1), dtype=int32)
    #定义一个绘画,启动默认图
    sess = tf.Session()
    #调用sess的run方法来执行矩阵的乘法op
    #run(product)触发了图中的3个op
    result = sess.run(product)
    print(result)
    sess.close()
    
    [[15]]
    with tf.Session() as sess:
        #调用sess的run方法来执行矩阵的乘法op
        #run(product)触发了图中的3个op
        result = sess.run(product)
        print(result)
    [[15]]
    import tensorflow as tf
    x = tf.Variable([1,2])
    a = tf.constant([3,3])
    #增加一个减法op
    sub = tf.subtract(x,a)
    #增加一个加法op
    add = tf.add(x,a)
    #初始化变量
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        print(sess.run(sub))
        print(sess.run(add)) 
    

      

    [-2 -1]
    [4 5]
    #创建一个变量,初始化为0
    state = tf.Variable(0,name="counter")
    #创建一个op,作用是让state加1
    new_value = tf.add(state,1)
    #赋值op,将new_value赋值给state
    update = tf.assign(state,new_value)
    init  = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        print(sess.run(state))
        for i in range(5):
            sess.run(update)
            print(sess.run(state))
    

      

    0
    1
    2
    3
    4
    5




    import tensorflow as tf
    #Fetch
    input1 = tf.constant(3.0)
    input2 = tf.constant(2.0)
    input3 = tf.constant(5.0)
    
    add = tf.add(input2,input3)
    mul = tf.multiply(input1,add)
    
    with tf.Session() as sess:
        result = sess.run([mul,add])
        print(result)
    

      

    [21.0, 7.0]

    #Feed
    #创建占位符
    input1 = tf.placeholder(tf.float32)
    input2 = tf.placeholder(tf.float32)
    output = tf.multiply(input1,input2)
    with tf.Session() as sess:
        #feed数据以字典的形式传入
        print(sess.run(output,feed_dict={input1:[8.],input2:[2.]}))
    [ 16.]
    import tensorflow as tf
    import numpy as np
    #使用numpy生成100个随机点
    x_data = np.random.rand(100)
    y_data = x_data*0.1+0.2
    
    #构造一个线性模型
    b = tf.Variable(32.11) #任意float32类型
    k = tf.Variable(88.23) #任意float32类型
    y = k*x_data+b
    
    #二次代价函数
    loss = tf.reduce_mean(tf.square(y_data-y))
    #定义一个梯度下降法来训练的一个优化器
    optimizer = tf.train.GradientDescentOptimizer(0.2)
    #最小化代价函数
    train = optimizer.minimize(loss)
    #初始化变量
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        for x in range(2001):
            sess.run(train)
            if x%20==0:
                print(x,sess.run([loss,k,b]))
                
    

      

    0 [1763.568, 68.205513, 0.53934586]
    20 [78.176331, 29.277592, -16.521879]
    40 [25.467432, 16.753452, -9.3442173]
    60 [8.2964983, 9.6051531, -5.2474737]
    80 [2.7027426, 5.5251789, -2.9092102]
    100 [0.88046998, 3.196485, -1.5746186]
    120 [0.28682989, 1.8673555, -0.81288457]
    140 [0.093440302, 1.108739, -0.37811583]
    160 [0.030439962, 0.67574972, -0.12996645]
    180 [0.0099163931, 0.4286159, 0.011667784]
    200 [0.0032304539, 0.28756142, 0.092507161]
    220 [0.0010523816, 0.20705287, 0.1386472]
    240 [0.00034283331, 0.16110168, 0.16498217]
    260 [0.00011168456, 0.13487452, 0.18001315]
    280 [3.6383361e-05, 0.11990504, 0.18859227]
    300 [1.1852552e-05, 0.11136103, 0.19348891]
    320 [3.861187e-06, 0.10648444, 0.19628373]
    340 [1.2578519e-06, 0.10370106, 0.1978789]
    360 [4.097719e-07, 0.10211243, 0.19878934]
    380 [1.3349e-07, 0.10120568, 0.19930901]
    400 [4.3487045e-08, 0.10068816, 0.19960561]
    420 [1.4166082e-08, 0.10039277, 0.19977491]
    440 [4.6153357e-09, 0.10022418, 0.19987151]
    460 [1.5033901e-09, 0.10012795, 0.19992667]
    480 [4.8975296e-10, 0.10007302, 0.19995815]
    500 [1.5952369e-10, 0.10004168, 0.19997612]
    520 [5.199877e-11, 0.10002379, 0.19998637]
    540 [1.6902115e-11, 0.10001357, 0.19999222]
    560 [5.5140779e-12, 0.10000775, 0.19999556]
    580 [1.7957324e-12, 0.10000442, 0.19999747]
    600 [5.8751669e-13, 0.10000253, 0.19999856]
    620 [1.9196201e-13, 0.10000144, 0.19999917]
    640 [6.716627e-14, 0.10000085, 0.19999951]
    660 [2.0625723e-14, 0.10000047, 0.19999973]
    680 [7.2808428e-15, 0.10000028, 0.19999984]
    700 [3.474998e-15, 0.10000018, 0.19999988]
    720 [3.474998e-15, 0.10000018, 0.19999988]
    740 [3.474998e-15, 0.10000018, 0.19999988]
    760 [3.474998e-15, 0.10000018, 0.19999988]
    780 [3.474998e-15, 0.10000018, 0.19999988]
    800 [3.474998e-15, 0.10000018, 0.19999988]
    820 [3.474998e-15, 0.10000018, 0.19999988]
    840 [3.474998e-15, 0.10000018, 0.19999988]
    860 [3.474998e-15, 0.10000018, 0.19999988]
    880 [3.474998e-15, 0.10000018, 0.19999988]
    900 [3.474998e-15, 0.10000018, 0.19999988]
    920 [3.474998e-15, 0.10000018, 0.19999988]
    940 [3.474998e-15, 0.10000018, 0.19999988]
    960 [3.474998e-15, 0.10000018, 0.19999988]
    980 [3.474998e-15, 0.10000018, 0.19999988]
    1000 [3.474998e-15, 0.10000018, 0.19999988]
    1020 [3.474998e-15, 0.10000018, 0.19999988]
    1040 [3.474998e-15, 0.10000018, 0.19999988]
    1060 [3.474998e-15, 0.10000018, 0.19999988]
    1080 [3.474998e-15, 0.10000018, 0.19999988]
    1100 [3.474998e-15, 0.10000018, 0.19999988]
    1120 [3.474998e-15, 0.10000018, 0.19999988]
    1140 [3.474998e-15, 0.10000018, 0.19999988]
    1160 [3.474998e-15, 0.10000018, 0.19999988]
    1180 [3.474998e-15, 0.10000018, 0.19999988]
    1200 [3.474998e-15, 0.10000018, 0.19999988]
    1220 [3.474998e-15, 0.10000018, 0.19999988]
    1240 [3.474998e-15, 0.10000018, 0.19999988]
    1260 [3.474998e-15, 0.10000018, 0.19999988]
    1280 [3.474998e-15, 0.10000018, 0.19999988]
    1300 [3.474998e-15, 0.10000018, 0.19999988]
    1320 [3.474998e-15, 0.10000018, 0.19999988]
    1340 [3.474998e-15, 0.10000018, 0.19999988]
    1360 [3.474998e-15, 0.10000018, 0.19999988]
    1380 [3.474998e-15, 0.10000018, 0.19999988]
    1400 [3.474998e-15, 0.10000018, 0.19999988]
    1420 [3.474998e-15, 0.10000018, 0.19999988]
    1440 [3.474998e-15, 0.10000018, 0.19999988]
    1460 [3.474998e-15, 0.10000018, 0.19999988]
    1480 [3.474998e-15, 0.10000018, 0.19999988]
    1500 [3.474998e-15, 0.10000018, 0.19999988]
    1520 [3.474998e-15, 0.10000018, 0.19999988]
    1540 [3.474998e-15, 0.10000018, 0.19999988]
    1560 [3.474998e-15, 0.10000018, 0.19999988]
    1580 [3.474998e-15, 0.10000018, 0.19999988]
    1600 [3.474998e-15, 0.10000018, 0.19999988]
    1620 [3.474998e-15, 0.10000018, 0.19999988]
    1640 [3.474998e-15, 0.10000018, 0.19999988]
    1660 [3.474998e-15, 0.10000018, 0.19999988]
    1680 [3.474998e-15, 0.10000018, 0.19999988]
    1700 [3.474998e-15, 0.10000018, 0.19999988]
    1720 [3.474998e-15, 0.10000018, 0.19999988]
    1740 [3.474998e-15, 0.10000018, 0.19999988]
    1760 [3.474998e-15, 0.10000018, 0.19999988]
    1780 [3.474998e-15, 0.10000018, 0.19999988]
    1800 [3.474998e-15, 0.10000018, 0.19999988]
    1820 [3.474998e-15, 0.10000018, 0.19999988]
    1840 [3.474998e-15, 0.10000018, 0.19999988]
    1860 [3.474998e-15, 0.10000018, 0.19999988]
    1880 [3.474998e-15, 0.10000018, 0.19999988]
    1900 [3.474998e-15, 0.10000018, 0.19999988]
    1920 [3.474998e-15, 0.10000018, 0.19999988]
    1940 [3.474998e-15, 0.10000018, 0.19999988]
    1960 [3.474998e-15, 0.10000018, 0.19999988]
    1980 [3.474998e-15, 0.10000018, 0.19999988]
    2000 [3.474998e-15, 0.10000018, 0.19999988]
    
     
     
     
     可以看出在迭代700次之后,损失值几乎不变了,k,b也基本固定不变了。
     
     

     

  • 相关阅读:
    C++面向对象高级编程(下)第二周-Geekband
    C++面向对象高级编程(下)第一周-Geekband
    C++面向对象高级编程(下)-Geekband
    堆,栈,内存管理, 拓展补充-Geekband
    C++面向对象高级编程(上)-Geekband
    MFC 多屏显示
    Open CASCADE Technology: IGES Support
    JAVA反射
    HashMap
    Linux 系统编程
  • 原文地址:https://www.cnblogs.com/Mjerry/p/9823980.html
Copyright © 2011-2022 走看看