zoukankan      html  css  js  c++  java
  • 第八周:hashCode()方法 & equals()方法

    在Java语言中,equals()和hashCode()两个函数的使用是紧密配合的,要是自己设计其中一个,就要设计另外一个。在多数情况 下,这两个函数是不用考虑的,直接使用它们的默认设计就可以了。但是在一些情况下,这两个函数最好是自己设计,才能确保整个程序的正常运行。最常见的是当 一个对象被加入收集对象(collection object)时,这两个函数必须自己设计。更细化的定义是:如果你想将一个对象A放入另一个收集对象B里,或者使用这个对象A为查找一个元对象在收集对 象B里位置的钥匙,并支持是否容纳,删除收集对象B里的元对象这样的操作,那么,equals()和hashCode()函数必须开发者自己定义。其他情况下,这两个函数是不需要定义的。

    一、equal()方法

    它是用于进行两个对象的比较的,是对象内容的比较,当然也能用于进行对象参阅值的比较。什么是对象参阅值的比较?就是两个参阅变量的值得比较,我们 都知道参阅变量的值其实就是一个数字,这个数字可以看成是鉴别不同对象的代号。两个对象参阅值的比较,就是两个数字的比较,两个代号的比较。这种比较是默 认的对象比较方式,在Object这个对象中,这种方式就已经设计好了。所以你也不用自己来重写,浪费不必要的时间。

    Object类中equals()方法实现如下:

    public boolean equals(Object obj) {
        return (this == obj);
    }
    

     通过该实现可以看出,Object类的实现采用了区分度最高的算法,即只要两个对象不是同一个对象,那么equals()一定返回false。

    虽然我们在定义类时,可以重写equals()方法,但是有一些注意事项;JDK中说明了实现equals()方法应该遵守的约定:

    (1)自反性:x.equals(x)必须返回true。

    (2)对称性:x.equals(y)与y.equals(x)的返回值必须相等。

    (3)传递性:x.equals(y)为true,y.equals(z)也为true,那么x.equals(z)必须为true。

    (4)一致性:如果对象x和y在equals()中使用的信息都没有改变,那么x.equals(y)值始终不变。

    (5)非null:x不是null,y为null,则x.equals(y)必须为false。

    二、hashCode()方法

    1、Object的hashCode()

    Object类中hashCode()方法的声明如下:

    public native int hashCode();
    

    可以看出,hashCode()是一个native方法,而且返回值类型是整形;实际上,该native方法将对象在内存中的地址作为哈希码返回,可以保证不同对象的返回值不同。

    与equals()方法类似,hashCode()方法可以被重写。JDK中对hashCode()方法的作用,以及实现时的注意事项做了说明:

    (1)hashCode()在哈希表中起作用,如java.util.HashMap。

    (2)如果对象在equals()中使用的信息都没有改变,那么hashCode()值始终不变。

    (3)如果两个对象使用equals()方法判断为相等,则hashCode()方法也应该相等。

    (4)如果两个对象使用equals()方法判断为不相等,则不要求hashCode()也必须不相等;但是开发人员应该认识到,不相等的对象产生不相同的hashCode可以提高哈希表的性能。

    2、hashCode()的作用

    总的来说,hashCode()在哈希表中起作用,如HashSet、HashMap等。

    当我们向哈希表(如HashSet、HashMap等)中添加对象object时,首先调用hashCode()方法计算object的哈希码,通过哈希码可以直接定位object在哈希表中的位置(一般是哈希码对哈希表大小取余)。如果该位置没有对象,可以直接将object插入该位置;如果该位置有对象(可能有多个,通过链表实现),则调用equals()方法比较这些对象与object是否相等,如果相等,则不需要保存object;如果不相等,则将该对象加入到链表中。

    这也就解释了为什么equals()相等,则hashCode()必须相等。如果两个对象equals()相等,则它们在哈希表(如HashSet、HashMap等)中只应该出现一次;如果hashCode()不相等,那么它们会被散列到哈希表的不同位置,哈希表中出现了不止一次。

    实际上,在JVM中,加载的对象在内存中包括三部分:对象头、实例数据、填充。其中,对象头包括指向对象所属类型的指针和MarkWord,而MarkWord中除了包含对象的GC分代年龄信息、加锁状态信息外,还包括了对象的hashcode;对象实例数据是对象真正存储的有效信息;填充部分仅起到占位符的作用, 原因是HotSpot要求对象起始地址必须是8字节的整数倍。

    三、如何重写hashCode()

    本节先介绍重写hashCode()方法应该遵守的原则,再介绍通用的hashCode()重写方法。

    1、重写hashcode()的原则

    通过前面的描述我们知道,重写hashCode需要遵守以下原则:

    (1)如果重写了equals()方法,检查条件“两个对象使用equals()方法判断为相等,则hashCode()方法也应该相等”是否成立,如果不成立,则重写hashCode ()方法。

    (2)hashCode()方法不能太过简单,否则哈希冲突过多。

    (3)hashCode()方法不能太过复杂,否则计算复杂度过高,影响性能。

    2、hashCode()重写方法

    Effective Java》中提出了一种简单通用的hashCode算法

    A、初始化一个整形变量,为此变量赋予一个非零的常数值,比如int result = 17;
    B、选取equals方法中用于比较的所有域(之所以只选择equals()中使用的域,是为了保证上述原则的第1条),然后针对每个域的属性进行计算:

    (1) 如果是boolean值,则计算f ? 1:0
    (2) 如果是bytecharshortint,则计算(int)f
    (3) 如果是long值,则计算(int)(f ^ (f >>> 32))
    (4) 如果是float值,则计算Float.floatToIntBits(f)
    (5) 如果是double值,则计算Double.doubleToLongBits(f),然后返回的结果是long,再用规则(3)去处理long,得到int
    (6) 如果是对象应用,如果equals方法中采取递归调用的比较方式,那么hashCode中同样采取递归调用hashCode的方式。否则需要为这个域计算一个范式,比如当这个域的值为null的时候,那么hashCode 值为0
    (7) 如果是数组,那么需要为每个元素当做单独的域来处理。java.util.Arrays.hashCode方法包含了8种基本类型数组和引用数组的hashCode计算,算法同上。

    C、最后,把每个域的散列码合并到对象的哈希码中。 

    下面通过一个例子进行说明。在该例中,Person类重写了equals()方法和hashCode()方法。因为equals()方法中只使用了name域和age域,所以hashCode()方法中,也只计算name域和age域。

    对于String类型的name域,直接使用了String的hashCode()方法;对于int类型的age域,直接用其值作为该域的hash。

    public class Person {
        private String name;
        private int age;
        private boolean gender;
      
        public Person() {
            super();
        }
      
        public String getName() {
            return name;
        }
        public void setName(String name) {
            this.name = name;
        }
        public int getAge() {
            return age;
        }
        public void setAge(int age) {
            this.age = age;
        }
        public boolean isGender() {
            return gender;
        }
        public void setGender(boolean gender) {
            this.gender = gender;
        }
      
        @Override
        public boolean equals(Object another) {
            if (this == another) {
                return true;
            }
            if (another instanceof Person) {
                Person anotherPerson = (Person) another;
                if (this.getName().equals(anotherPerson.getName()) && this.getAge() == anotherPerson.getAge()) {
                    return true;
                } else {
                    return false;
                }
            }
            return false;
        }
      
        @Override
        public int hashCode() {
            int hash = 17;
            hash = hash * 31 + getName().hashCode();
            hash = hash * 31 + getAge();
            return hash;
        }
    }
    

       

    五、hashCode()的返回值和equals()的关系如下:

    •如果x.equals(y)返回“true”,那么x和y的hashCode()必须相等。

    •如果x.equals(y)返回“false”,那么x和y的hashCode()有可能相等,也有可能不等。

    为什么这两个规则是这样的,原因其实很简单,拿HashSet来说吧,HashSet可以拥有一个或更多的箱子,在同一个箱子中可以有一个 或更多的独特元对象(HashSet所容纳的必须是独特的元对象)。这个例子说明一个元对象可以和其他不同的元对象拥有相同的hashCode。但是一个 元对象只能和拥有同样内容的元对象相等。所以这两个规则必须成立。

    六、设计这两个函数所要注意到的:

    如果你设计的对象类型并不使用于收集性对象,那么没有必要自己再设计这两个函数的处理方式。这是正确的面向对象设计方法,任何用户一时用不到的功能,就先不要设计,以免给日后功能扩展带来麻烦。

    如果你在设计时想别出心裁,不遵守以上的两套规则,那么劝你还是不要做这样想入非非的事。我还没有遇到过哪一个开发者和我说设计这两个函数要违背前面说的两个规则,我碰到这些违反规则的情况时,都是作为设计错误处理。

    当一个对象类型作为收集型对象的元对象时,这个对象应该拥有自己处理equals(),和/或处理hashCode()的设计,而且要遵守前面所说 的两种原则。equals()先要查null和是否是同一类型。查同一类型是为了避免出现ClassCastException这样的异常给丢出来。查 null是为了避免出现NullPointerException这样的异常给丢出来。

    如果你的对象里面容纳的数据过多,那么这两个函数 equals()和hashCode()将会变得效率低。如果对象中拥有无法serialized的数据,equals()有可能在操作中出现错误。想象 一个对象x,它的一个整型数据是transient型(不能被serialize成二进制数据流)。然而equals()和hashCode()都有依靠 这个整型数据,那么,这个对象在serialization之前和之后,是否一样?答案是不一样。因为serialization之前的整型数据是有效的 数据,在serialization之后,这个整型数据的值并没有存储下来,再重新由二进制数据流转换成对象后,两者(对象在serialization 之前和之后)的状态已经不同了。这也是要注意的。

    参于:http://www.importnew.com/25783.html,http://www.importnew.com/25783.html

  • 相关阅读:
    堆栈学习
    需要阅读的书籍
    Rust Book Lang Ch.19 Fully Qualified Syntax, Supertraits, Newtype Pattern, type aliases, never type, dynamic sized type
    Rust Lang Book Ch.19 Placeholder type, Default generic type parameter, operator overloading
    Rust Lang Book Ch.19 Unsafe
    Rust Lang Book Ch.18 Patterns and Matching
    Rust Lang Book Ch.17 OOP
    Rust Lang Book Ch.16 Concurrency
    Rust Lang Book Ch.15 Smart Pointers
    HDU3966-Aragorn's Story-树链剖分-点权
  • 原文地址:https://www.cnblogs.com/MnineJane/p/8981925.html
Copyright © 2011-2022 走看看