zoukankan      html  css  js  c++  java
  • Tensorflow的对二次函数的神经网络训练

    这个是tensorflow的一个YouTube上的教程。

    作为学习资料,拿来敲了一遍。

    这是对一个二次函数的进行神经网络的训练

    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    def add_layer(inputs, in_size, out_size, activation_function=None):
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    
    # Make up some real data
    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise
    
    ##plt.scatter(x_data, y_data)
    ##plt.show()
    
    # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 1])
    ys = tf.placeholder(tf.float32, [None, 1])
    # add hidden layer
    l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
    # add output layer
    prediction = add_layer(l1, 10, 1, activation_function=None)
    
    # the error between prediciton and real data
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    # important step
    init = tf.initialize_all_variables()
    sess= tf.Session()
    sess.run(init)
    
    # plot the real data
    fig = plt.figure()
    ax = fig.add_subplot(1,1,1)
    ax.scatter(x_data, y_data)
    plt.ion()
    plt.show()
    
    
    for i in range(1000):
        # training
        sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
        if i % 50 == 0:
            # to visualize the result and improvement
            try:
                ax.lines.remove(lines[0])
            except Exception:
                pass
            prediction_value = sess.run(prediction, feed_dict={xs: x_data})
            # plot the prediction
            lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
            plt.pause(1)

    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    def add_layer(inputs, in_size, out_size, activation_function=None):
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))
        biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    
    # Make up some real data
    x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
    noise = np.random.normal(0, 0.05, x_data.shape)
    y_data = np.square(x_data) - 0.5 + noise
    
    ##plt.scatter(x_data, y_data)
    ##plt.show()
    
    # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 1])
    ys = tf.placeholder(tf.float32, [None, 1])
    # add hidden layer
    l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
    # add output layer
    prediction = add_layer(l1, 10, 1, activation_function=None)
    
    # the error between prediciton and real data
    loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction), reduction_indices=[1]))
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    # important step
    init = tf.initialize_all_variables()
    sess= tf.Session()
    sess.run(init)
    
    for i in range(1000):
        # training
        sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
        if i % 50 == 0:
            # to see the step improvement
            print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))

  • 相关阅读:
    MySQL
    Shell运算符:Shell算数运算符、关系运算符、布尔运算符、字符串运算符等
    ps
    top
    sed
    nav响应范围一定要足够宽
    续上获取input的checked用prop时返回的是布尔值
    jq不应该用attr获取input的check值
    jq祖级元素
    一些jquery的坑
  • 原文地址:https://www.cnblogs.com/MnsterLu/p/5846854.html
Copyright © 2011-2022 走看看