数据集介绍
数据集划分
- 训练数据:用于训练,构建模型
- 测试数据:在模型检验时使用,用于评估模型是否有效
划分比例:
- 训练集:70% 80% 75%
- 测试集:30% 20% 30%
API
- sklearn.model_selection.train_test_split(arrays, *options)
- x 数据集的特征值
- y 数据集的标签值(目标值)
- test_size 测试集的大小,一般为float
- random_state 随机数种子,不同的种子会造成不同的随机采样结果。相同的种子采样结果相同。
- return ,训练集特征值,测试集特征值,训练集目标值,测试集目标值
x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
sklearn转换器和估计器
转换器
转换器 - 特征工程的父类,实例化的是一个转换器类(Transformer)
估计器(sklearn机器学习算法的实现)
1、用于分类的估计器:
- sklearn.neighbors k-近邻算法
- sklearn.naive_bayes 贝叶斯
- sklearn.linear_model.LogisticRegression 逻辑回归
- sklearn.tree 决策树与随机森林
2、用于回归的估计器:
- sklearn.linear_model.LinearRegression 线性回归
- sklearn.linear_model.Ridge 岭回归
3、用于无监督学习的估计器
- sklearn.cluster.KMeans 聚类
估计器工作流程
- 实例化一个estimator
- estimator.fit(x_train, y_train) 计算
- 模型评估
-
- 直接比对真实值和预测值:y_predict = estimator.predict(x_test) y_test == y_predict
- 计算准确率:accuracy = estimator.score(x_test, y_test)
模型选择与调优
交叉验证
定义
将拿到的训练数据,分为训练和验证集。比如:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。
- 训练集:训练集+验证集
- 测试集:测试集
超参数搜索-网格搜索(Grid Search)
通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。
模型选择与调优
sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
- 对估计器的指定参数值进行详尽搜索
- estimator:估计器对象
- param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
- cv:指定几折交叉验证
- fit:输入训练数据
- score:准确率
- 结果分析:
- bestscore:在交叉验证中验证的最好结果_
- bestestimator:最好的参数模型
- cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果
K-近邻算法(KNN)
定义
如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。即根据你的“邻居”来推断出你的类别
K-近邻算法API
sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm='auto')
- n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
- algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)
案例:鸢尾花种类预测
代码
def knn_iris_gscv(): """ 用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证 :return: """ # 1)获取数据 iris = load_iris() # 2)划分数据集 x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22) # 3)特征工程:标准化 transfer = StandardScaler() x_train = transfer.fit_transform(x_train) x_test = transfer.transform(x_test) # 4)KNN算法预估器 estimator = KNeighborsClassifier() # 加入网格搜索与交叉验证 # 参数准备 param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]} estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10) estimator.fit(x_train, y_train) # 5)模型评估 # 方法1:直接比对真实值和预测值 y_predict = estimator.predict(x_test) print("y_predict: ", y_predict) print("直接比对真实值和预测值: ", y_test == y_predict) # 方法2:计算准确率 score = estimator.score(x_test, y_test) print("准确率为: ", score) # 最佳参数:best_params_ print("最佳参数: ", estimator.best_params_) # 最佳结果:best_score_ print("最佳结果: ", estimator.best_score_) # 最佳估计器:best_estimator_ print("最佳估计器: ", estimator.best_estimator_) # 交叉验证结果:cv_results_ print("交叉验证结果: ", estimator.cv_results_) return None
K-近邻总结
- 优点:
- 简单,易于理解,易于实现,无需训练
- 缺点:
- 懒惰算法,对测试样本分类时的计算量大,内存开销大
- 必须指定K值,K值选择不当则分类精度不能保证
- 使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试