逻辑回归
定义
逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛。逻辑回归是解决二分类(两个类别之间的判断)问题的利器
原理
输入
逻辑回归的输入就是一个线性回归的结果(输出)。
激活函数
- sigmoid函数
- 分析
- 回归的结果输入到sigmoid函数当中
- 输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值
输出结果解释
假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.6,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。
损失以及优化
损失
逻辑回归的损失,称之为对数似然损失,公式如下:
- 分开类别:
- 综合完整损失函数
优化
同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。
逻辑回归API
sklearn.linear_model.LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)
- solver:优化求解方式(默认开源的liblinear库实现,内部使用了坐标轴下降法来迭代优化损失函数)
- sag:根据数据集自动选择,随机平均梯度下降
- penalty:正则化的种类
- C:正则化力度
案例:癌症分类预测-良/恶性乳腺癌肿瘤预测
from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler import pandas as pd import numpy as np def logisticregression(): """ 逻辑回归进行癌症预测 :return: None """ # 1、读取数据,处理缺失值以及标准化 column_name = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape', 'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'Class'] data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data", names=column_name) # 删除缺失值 data = data.replace(to_replace='?', value=np.nan) data = data.dropna() # 取出特征值 x = data[column_name[1:10]] y = data[column_name[10]] # 分割数据集 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3) # 进行标准化 std = StandardScaler() x_train = std.fit_transform(x_train) x_test = std.transform(x_test) # 使用逻辑回归 lr = LogisticRegression() lr.fit(x_train, y_train) print("得出来的权重:", lr.coef_) # 预测类别 print("预测的类别:", lr.predict(x_test)) # 得出准确率 print("预测的准确率:", lr.score(x_test, y_test)) return None if __name__ == '__main__': logisticregression()
分类的评估方法
混淆矩阵
在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)
精确率与召回率
- 精确率:预测结果为正例样本中真实为正例的比例(了解)
- 召回率:真实为正例的样本中预测结果为正例的比例(查的全,对正样本的区分能力)
F1-score,反映了模型的稳健型
分类评估报告API
sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None )
- y_true:真实目标值
- y_pred:估计器预测目标值
- labels:指定类别对应的数字
- target_names:目标类别名称
- return:每个类别精确率与召回率
print("精确率和召回率为:", classification_report(y_test, lr.predict(x_test), labels=[2, 4], target_names=['良性', '恶性']))
ROC曲线与AUC指标
TPR与FPR
- TPR = TP / (TP + FN)
- 所有真实类别为1的样本中,预测类别为1的比例
- FPR = FP / (FP + FN)
- 所有真实类别为0的样本中,预测类别为1的比例
ROC曲线
- ROC曲线的横轴就是FPRate,纵轴就是TPRate,当二者相等时,表示的意义则是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的,此时AUC为0.5
AUC指标
- AUC的概率意义是随机取一对正负样本,正样本得分大于负样本的概率
- AUC的最小值为0.5,最大值为1,取值越高越好
- AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
- 0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
最终AUC的范围在[0.5, 1]之间,并且越接近1越好
AUC计算API
- from sklearn.metrics import roc_auc_score
- sklearn.metrics.roc_auc_score(y_true, y_score)
- 计算ROC曲线面积,即AUC值
- y_true:每个样本的真实类别,必须为0(反例),1(正例)标记
- y_score:每个样本预测的概率值
- sklearn.metrics.roc_auc_score(y_true, y_score)
# 0.5~1之间,越接近于1约好 y_test = np.where(y_test > 2.5, 1, 0) print("AUC指标:", roc_auc_score(y_test, lr.predict(x_test)))
总结
- AUC只能用来评价二分类
- AUC非常适合评价样本不平衡中的分类器性能