zoukankan      html  css  js  c++  java
  • PCL欧几里得簇提取3d点云分割

    理论依据

    假设我们得到了一个点云, 我们想要找到并分割。 假设我们使用Kd-tree结构来查找最近的邻居,算法步骤是:

    代码

    算法的关键在于设置合理提取的阈值 ,如果取很小的值,它可能把一个对象可以看作是多个群集。 反之,如果将值设置得太高,则可能会发生多个对象被视为一个集群。

    	pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    	ec.setClusterTolerance(2); // 2cm
    	ec.setMinClusterSize(100);
    	ec.setMaxClusterSize(25000);
    	ec.setSearchMethod(tree);
    	ec.setInputCloud(cloud_filtered);
    	ec.extract(cluster_indices);
    
    #include <iostream> //标准输入输出流
    #include <pcl/io/pcd_io.h> //PCL的PCD格式文件的输入输出头文件
    #include <pcl/point_types.h> //PCL对各种格式的点的支持头文件
    #include <pcl/visualization/cloud_viewer.h>//点云查看窗口头文件
    #include <pcl/surface/convex_hull.h>
    #include<pcl/io/pcd_io.h>
    #include<pcl/point_types.h>
    #include "opencv2/opencv.hpp"
    #include <pcl/visualization/pcl_visualizer.h>
    #include <boost/thread/thread.hpp>
    
    #include <pcl/ModelCoefficients.h>
    #include <pcl/point_types.h>
    #include <pcl/io/pcd_io.h>
    #include <pcl/filters/extract_indices.h>
    #include <pcl/filters/voxel_grid.h>
    #include <pcl/features/normal_3d.h>
    #include <pcl/kdtree/kdtree.h>
    #include <pcl/sample_consensus/method_types.h>
    #include <pcl/sample_consensus/model_types.h>
    #include <pcl/segmentation/sac_segmentation.h>
    #include <pcl/segmentation/extract_clusters.h>
    int main(int argc, char** argv)
    {
    	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>), cloud_f(new pcl::PointCloud<pcl::PointXYZ>);;
    	pcl::io::loadPCDFile<pcl::PointXYZ>("reproject_pcd.pcd", *cloud);
    	//visualization(cloud);
    
      // Create the filtering object: downsample the dataset using a leaf size of 1cm
    	pcl::VoxelGrid<pcl::PointXYZ> vg;
    	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
    	vg.setInputCloud(cloud);
    	vg.setLeafSize(0.01f, 0.01f, 0.01f);
    	vg.filter(*cloud_filtered);
    	std::cout << "PointCloud after filtering has: " << cloud_filtered->size() << " data points." << std::endl; //*
    
    	// Create the segmentation object for the planar model and set all the parameters
    	pcl::SACSegmentation<pcl::PointXYZ> seg;
    	pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
    	pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
    	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane(new pcl::PointCloud<pcl::PointXYZ>());
    	pcl::PCDWriter writer;
    	seg.setOptimizeCoefficients(true);
    	seg.setModelType(pcl::SACMODEL_PLANE);
    	seg.setMethodType(pcl::SAC_RANSAC);
    	seg.setMaxIterations(100);
    	seg.setDistanceThreshold(0.2);
    
    	int i = 0, nr_points = (int)cloud_filtered->size();
    	while (cloud_filtered->size() > 0.3 * nr_points)
    	{
    		// Segment the largest planar component from the remaining cloud
    		seg.setInputCloud(cloud_filtered);
    		seg.segment(*inliers, *coefficients);
    		if (inliers->indices.size() == 0)
    		{
    			std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
    			break;
    		}
    
    		// Extract the planar inliers from the input cloud
    		pcl::ExtractIndices<pcl::PointXYZ> extract;
    		extract.setInputCloud(cloud_filtered);
    		extract.setIndices(inliers);
    		extract.setNegative(false);
    
    		// Get the points associated with the planar surface
    		extract.filter(*cloud_plane);
    		std::cout << "PointCloud representing the planar component: " << cloud_plane->size() << " data points." << std::endl;
    
    		// Remove the planar inliers, extract the rest
    		extract.setNegative(true);
    		extract.filter(*cloud_f);
    		*cloud_filtered = *cloud_f;
    	}
    
    	// Creating the KdTree object for the search method of the extraction
    	pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
    	tree->setInputCloud(cloud_filtered);
    
    	std::vector<pcl::PointIndices> cluster_indices;
    	pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
    	ec.setClusterTolerance(2); // 2cm
    	ec.setMinClusterSize(100);
    	ec.setMaxClusterSize(25000);
    	ec.setSearchMethod(tree);
    	ec.setInputCloud(cloud_filtered);
    	ec.extract(cluster_indices);
    
    	int j = 0;
    	for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
    	{
    		pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);
    		for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)
    			cloud_cluster->push_back((*cloud_filtered)[*pit]); //*
    		cloud_cluster->width = cloud_cluster->size();
    		cloud_cluster->height = 1;
    		cloud_cluster->is_dense = true;
    
    		std::cout << "PointCloud representing the Cluster: " << cloud_cluster->size() << " data points." << std::endl;
    		std::stringstream ss;
    		ss << "cloud_cluster_pcl" << j << ".pcd";
    		writer.write<pcl::PointXYZ>(ss.str(), *cloud_cluster, false); //*
    		j++;
    	}
    
    	return (0);
    }
    

    分割结果

  • 相关阅读:
    指针
    const
    指针数组和指向数组的指针
    extjs初探之由浅入深目录
    ie6字体设置13px引发的问题
    在IAR下通过Jlink将程序直接下载到Flash指定地址
    提高C语言程序运行稳定性的方法
    C/C++编程习惯
    释放QQ占用的C盘空间
    非阻塞算法思想在关系数据库应用程序开发中的使用
  • 原文地址:https://www.cnblogs.com/MorganMa/p/14335065.html
Copyright © 2011-2022 走看看