zoukankan      html  css  js  c++  java
  • [LeetCode] 322. Coin Change

    You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

    Example 1:

    Input: coins = [1, 2, 5], amount = 11
    Output: 3 
    Explanation: 11 = 5 + 5 + 1

    Example 2:

    Input: coins = [2], amount = 3
    Output: -1
    

    Note:
    You may assume that you have an infinite number of each kind of coin.

    题意:给一个金币数组要求用最少的金币数组成 amount

    这种题一看就是DP,关键在于找到转方程

    dp[i][j] = min(dp[i-1][j], dp[i][j - coins[i]] + 1) 

    做dp题要理解dp中两个维度的含义,做起来就容易一些

    class Solution {
        public int coinChange(int[] coins, int amount) {
            int[] dp[] = new int [coins.length + 1][amount + 1];
            // 求最小先初始化最大值,留出dp[x][0]为0就行了
            // 用MAX_VALUE时要注意可能越界否,最好给它减一些数
            for (int i = 0; i < coins.length; i++)
                for (int j = 1; j <= amount; j++)
                    dp[i][j] = Integer.MAX_VALUE - 1;
            
            // 先把dp[0][x] 的情况处理的,不然之后转移方程会有越界情况
            for (int j = 1; j <= amount; ++ j) {
                if (j - coins[0] >= 0) {
                    dp[0][j] = Math.min(dp[0][j - coins[0]] + 1, dp[0][j]);
                }
            }
            
            // 接下来就容易了,只要有转移方程,在可以判断的情况下就去判断
            for (int i = 1; i < coins.length; i++) {
                for (int j = 1; j <= amount; j++) {
                    if (j - coins[i] >= 0) {
                        dp[i][j] = Math.min(dp[i][j - coins[i]] + 1, dp[i - 1][j]);
                    } else {
                        dp[i][j] = dp[i - 1][j];
                    }
                }
            }
            if (dp[coins.length - 1][amount] >= Integer.MAX_VALUE - 1)
                return -1;
            return dp[coins.length - 1][amount];
        }
    }
  • 相关阅读:
    Java.io 包(字节流)
    Java 集合框架(常用数据结构)
    Java.util 包(Date 类、Calendar类、Random类)
    Java.lang 包 (包装类、String类、Math类、Class类、Object类)
    Java 多态(接口)
    maxcompute troubleshoot
    maxcompute
    文件命名
    weblogic修改ServerName
    设计模式---策略模式
  • 原文地址:https://www.cnblogs.com/Moriarty-cx/p/9770707.html
Copyright © 2011-2022 走看看