zoukankan      html  css  js  c++  java
  • [LeetCode] 322. Coin Change

    You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

    Example 1:

    Input: coins = [1, 2, 5], amount = 11
    Output: 3 
    Explanation: 11 = 5 + 5 + 1

    Example 2:

    Input: coins = [2], amount = 3
    Output: -1
    

    Note:
    You may assume that you have an infinite number of each kind of coin.

    题意:给一个金币数组要求用最少的金币数组成 amount

    这种题一看就是DP,关键在于找到转方程

    dp[i][j] = min(dp[i-1][j], dp[i][j - coins[i]] + 1) 

    做dp题要理解dp中两个维度的含义,做起来就容易一些

    class Solution {
        public int coinChange(int[] coins, int amount) {
            int[] dp[] = new int [coins.length + 1][amount + 1];
            // 求最小先初始化最大值,留出dp[x][0]为0就行了
            // 用MAX_VALUE时要注意可能越界否,最好给它减一些数
            for (int i = 0; i < coins.length; i++)
                for (int j = 1; j <= amount; j++)
                    dp[i][j] = Integer.MAX_VALUE - 1;
            
            // 先把dp[0][x] 的情况处理的,不然之后转移方程会有越界情况
            for (int j = 1; j <= amount; ++ j) {
                if (j - coins[0] >= 0) {
                    dp[0][j] = Math.min(dp[0][j - coins[0]] + 1, dp[0][j]);
                }
            }
            
            // 接下来就容易了,只要有转移方程,在可以判断的情况下就去判断
            for (int i = 1; i < coins.length; i++) {
                for (int j = 1; j <= amount; j++) {
                    if (j - coins[i] >= 0) {
                        dp[i][j] = Math.min(dp[i][j - coins[i]] + 1, dp[i - 1][j]);
                    } else {
                        dp[i][j] = dp[i - 1][j];
                    }
                }
            }
            if (dp[coins.length - 1][amount] >= Integer.MAX_VALUE - 1)
                return -1;
            return dp[coins.length - 1][amount];
        }
    }
  • 相关阅读:
    Office 转 PDF & PDF 转 SWF Windows版
    Office 转 PDF & PDF 转 SWF Linux版
    MP4Box 编译 和相应命令
    CentOS VNC 安装与配置,方便进行运程桌面连接
    系统时钟&&硬件时钟
    IPtables中SNAT、DNAT和MASQUERADE的含义
    配置SNAT实现共享上网
    DNAT & SNAT
    linux应急操作
    linux-清理linux空间
  • 原文地址:https://www.cnblogs.com/Moriarty-cx/p/9770707.html
Copyright © 2011-2022 走看看