树型DP + 可并堆
非常清楚的想到是树型DP, 但是如何维护最小值, 于是就去新学了可并堆
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#define ll long long
using namespace std;
const int MAXN = 100005;
ll init() {
ll rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return fh * rv;
}
struct edge{
int to, nxt;
}e[MAXN << 1];
int n, m, head[MAXN], nume, rot, fa[MAXN], id[MAXN];
ll ans, wei[MAXN], mon[MAXN], siz[MAXN], sum[MAXN];
void adde(int from, int to) {
e[++nume].to = to;
e[nume].nxt = head[from];
head[from] = nume;
}
struct LT{
struct node{
int l, r;
ll val, dist;
}a[MAXN];
int merge(int u, int v) {
if(!u || !v) return u + v;
if(a[u].val < a[v].val) swap(u, v);
int &ur = a[u].r, &ul = a[u].l;
ur = merge(ur, v);
if(a[ul].dist < a[ur].dist) swap(ul, ur);
a[u].dist = a[ur].dist + 1;
return u;
}
void erase(int &u) {
u = merge(a[u].l, a[u].r);
}
}lt;
void dfs(int u) {
id[u] = u;
siz[u] = 1;
sum[u] = mon[u];
lt.a[u].val = mon[u];
for(int i = head[u]; i; i = e[i].nxt) {
int v = e[i].to;
dfs(v);
sum[u] += sum[v];
siz[u] += siz[v];
id[u] = lt.merge(id[u], id[v]);
}
while(sum[u] > m && siz[u]) {
siz[u]--;
sum[u] -= lt.a[id[u]].val;
lt.erase(id[u]);
}
ans = max(ans, siz[u] * wei[u]);
}
int main() {
n = init(); m = init();
for(int i = 1; i <= n; i++) {
fa[i] = init();
if(fa[i]) adde(fa[i], i);
else rot = i;
mon[i] = init(); wei[i] = init();
}
dfs(rot);
/*for(int i = 1; i <= n; i++) {
printf("%lld %lld
", siz[i], sum[i]);
}*/
cout << ans << endl;
return 0;
}