泊松分布描述的是给定的某段时间内,事件发生的概率
1.Poisson Process
1.1 Counting process

independent increment


注:增量是独立并且稳定的,同样服从泊松分布!!!!这个实际上是无记忆性!

Mean, Variance

下面通过例子理解:


如何构建泊松过程:


泊松过程描述的是给定的时间t之前发生的事件总数!!
1.2 Definition
关于泊松分布的定义,有以下两种


1.3 Properties
1.3.1 Decomposition


1.3.2 Superposition

举例应用:




1.4 Conditioanal distribution of arrival times
1.4.1

-
In other words, the time of the event should be uniformly distributed over [0, t].
1.4.2 Order statistics
-
Let Y1,Y2,...,Yn be n random variables. We say that Y(1),Y(2),...,Y(n) are the corresponding order statistics if Y(k) is the k th smallest
value among Y1,Y2,...,Yn.
-
For instance,
(Y1,Y2,Y3)=(4,5,1)
The corresponding order statistics are(Y(1),Y(2),Y(3))=(1,4,5).



下面是例子:

