zoukankan      html  css  js  c++  java
  • spoj 1812

    1812. Longest Common Substring II

    Problem code: LCS2

     

    A string is finite sequence of characters over a non-empty finite set Σ.

    In this problem, Σ is the set of lowercase letters.

    Substring, also called factor, is a consecutive sequence of characters occurrences at least once in a string.

    Now your task is a bit harder, for some given strings, find the length of the longest common substring of them.

    Here common substring means a substring of two or more strings.

    Input

    The input contains at most 10 lines, each line consists of no more than 100000 lowercase letters, representing a string.

    Output

    The length of the longest common substring. If such string doesn't exist, print "0" instead.

    Example

    Input:

    alsdfkjfjkdsal

    fdjskalajfkdsla

    aaaajfaaaa

    Output:

    2

    大意:

    求出多个串的最长公共字串,输出长度.

    分析:

    我们这么想:

    我们先拿两个串A,B匹配,然后在两个串的匹配过程中计算出后缀自动机SAM_A中某个节点x能在B中匹配的最长的长度.

    那么这个问题就解决了.(我可以继续匹配C,D)最后取个min.

    裸地解决这个问题是O(L2)的.

    所以我们应用上spoj1811中的性质: parent _x 和 x 节点的最长公共部分是 max_parent_x.

    那么我们只要利用孩子的匹配长度就能够直接推出parent的匹配长度. min(Min[par[x]], Max[x])

    (Min[x] 表示从x节点开始在当前已经考虑的串中,从x节点出发能够拓展的最长的长度. Max[x] 表示在当前串内, 从x节点出发, 能够匹配的最长的长度.)

    值得注意的是,当 Min[par[x]] != 0 && Max[x] != 0 时, Min[par[x]] + 1 <= Max[x].

    所以,我们现在的关键在于面对 Max[x] == 0 的情况.

    这种情况下,表明从x这个点无法进行拓展,所以自然表示par[x] 也无法进行拓展,因为par是x的极大后缀串.

     所以我们迭代更新Min的值,最后取Min就ok了.

    代码中加入了一个特判来验证我的猜想:

    偷懒没有用"鸡排"....见谅.

     1 #include<cstdlib>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #include<cassert>
     6 using namespace std;
     7 const int maxn = (int)1.01e6,sigma = 26;
     8 char str[maxn];
     9 int Min[maxn * 2],Max[maxn * 2],id[maxn * 2];
    10 int cmq(int,int);
    11 struct Sam{
    12     int ch[maxn * 2][sigma],par[maxn * 2],stp[maxn * 2];
    13     int sz,last;
    14     void init(){
    15         sz = last = 1;
    16     }
    17     void ext(int c){
    18         stp[++sz] = stp[last] + 1;
    19         int p = last, np = sz;
    20         for(; !ch[p][c]; p = par[p]) ch[p][c] = np;
    21         if(p == 0) par[np] = 1;
    22         else{
    23             int q = ch[p][c];
    24             if(stp[q] != stp[p] + 1){
    25                 stp[++sz] = stp[p] + 1;
    26                 int nq = sz;
    27                 memcpy(ch[nq],ch[q],sizeof(ch[q]));
    28                 par[nq] = par[q];
    29                 par[q] = par[np] = nq;
    30                 for(; ch[p][c] == q; p = par[p]) ch[p][c] = nq;
    31             }
    32             else par[np] = q;
    33         }
    34         last = np;
    35     }
    36     void ins(char *pt){
    37         int i;
    38         init();
    39         for(i = 0; pt[i]; ++i) ext(pt[i] - 'a');
    40     }
    41     void prep(){
    42         int i;
    43         for(i = 1; i <= sz; ++i) Min[i] = stp[i];
    44         for(i = 1; i <= sz; ++i) id[i] = i;
    45         sort(id + 1, id + sz + 1,cmq); 
    46     }
    47     void cmp(char *pt){
    48         int i,x = 1,cnt = 0;
    49         fill(Max, Max + sz + 2, 0);
    50         for(i = 0; pt[i]; ++i){
    51             if(ch[x][pt[i] - 'a']){
    52                 x = ch[x][pt[i] - 'a'];
    53                 Max[x] = max(Max[x],++cnt);
    54             }
    55             else{
    56                 while(x != 1 && !ch[x][pt[i] - 'a']) x = par[x], cnt = stp[x];
    57                 if(ch[x][pt[i] - 'a']) x = ch[x][pt[i] - 'a'],Max[x] = max(Max[x],++cnt);
    58             }
    59         }        
    60         for(i = 1; i <= sz; ++i){
    61             if(id[i] != 1 && Min[par[id[i]]] && Max[id[i]])
    62                 assert(Min[par[id[i]]] + 1 <= Max[id[i]]);
    63             Min[id[i]] = min(Min[id[i]], Max[id[i]]);            
    64             Max[par[id[i]]] = max(Max[par[id[i]]], Max[id[i]]);
    65         }
    66     }
    67 }sam;
    68 int cmq(int x,int y){
    69     return sam.stp[x] > sam.stp[y];
    70 }
    71 int main()
    72 {
    73     freopen("substr.in","r",stdin);
    74     freopen("substr.out","w",stdout);
    75     scanf("%s",str);
    76     sam.ins(str);
    77     sam.prep();
    78     while(scanf("%s",str) != EOF) 
    79         sam.cmp(str);
    80     printf("%d
    ",*max_element(Min + 1, Min + sam.sz + 1));
    81     return 0;
    82 }
    View Code
  • 相关阅读:
    内核驱动系列中断和定时器
    apue2 阅读笔记第四章
    apue2 阅读笔记 第五章
    apue2阅读笔记 第6.7章
    再试试windows7版得writer
    内核驱动系列内核调试方法
    apue2 阅读笔记第三章
    杂谈关于代码库
    know everything about something
    React的父子传值(父传子)
  • 原文地址:https://www.cnblogs.com/Mr-ren/p/4209599.html
Copyright © 2011-2022 走看看