dubbo中涉及到的负载均衡算法只要有四种:Random LoadBalance(随机均衡算法)、RoundRobin LoadBalance(权重轮循均衡算法)、LeastAction LoadBalance(最少活跃调用数均衡算法)、ConsistentHash LoadBalance(一致性Hash均衡算法)。
在dubbo中,首先定义了一个LoadBalance的接口。
public interface LoadBalance { /** * select one invoker in list. * * @param invokers invokers. * @param url refer url * @param invocation invocation. * @return selected invoker. */ @Adaptive("loadbalance") <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) throws RpcException; }
这个接口中,只定义了一个select方法,用于在候选的invokers中选择一个invoker对象出来。
首先有一个AbstractLoadBalance类来实现LoadBalance接口,重写了LoadBalance接口中唯一的select方法。
public abstract class AbstractLoadBalance implements LoadBalance { static int calculateWarmupWeight(int uptime, int warmup, int weight) { int ww = (int) ((float) uptime / ((float) warmup / (float) weight)); return ww < 1 ? 1 : (ww > weight ? weight : ww); } public <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) { if (invokers == null || invokers.size() == 0) return null; if (invokers.size() == 1) return invokers.get(0); return doSelect(invokers, url, invocation); } protected abstract <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation); protected int getWeight(Invoker<?> invoker, Invocation invocation) { int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); if (weight > 0) { long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 0L); if (timestamp > 0L) { int uptime = (int) (System.currentTimeMillis() - timestamp); int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, Constants.DEFAULT_WARMUP); if (uptime > 0 && uptime < warmup) { weight = calculateWarmupWeight(uptime, warmup, weight); } } } return weight; } }
1.invoker的list中若0个则返回null,1个元素则直接返回,若多于否则调用抽象方法doSelect交给子类实现;
2.通过公式(int) ( (float) uptime / ( (float) warmup / (float) weight ) )获取invoker的权重的方法;
3.如果未设置权重或者权重值都一样,则直接调用random.nextInt()随机获得一个invoker;若设置了权重并且不一样,则在总权重中随机,分布在哪个invoker的分片上,则选择该invoker对象,实现了按照权重随机。
四种不同的负载均衡算法分别为四个类,分别进行分析。
1.Random LoadBalance(随机均衡算法)
public class RandomLoadBalance extends AbstractLoadBalance { public static final String NAME = "random"; private final Random random = new Random(); protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) { int length = invokers.size(); // Number of invokers int totalWeight = 0; // The sum of weights boolean sameWeight = true; // Every invoker has the same weight? for (int i = 0; i < length; i++) { int weight = getWeight(invokers.get(i), invocation); totalWeight += weight; // Sum if (sameWeight && i > 0 && weight != getWeight(invokers.get(i - 1), invocation)) { sameWeight = false; } } if (totalWeight > 0 && !sameWeight) { // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight. int offset = random.nextInt(totalWeight); // Return a invoker based on the random value. for (int i = 0; i < length; i++) { offset -= getWeight(invokers.get(i), invocation); if (offset < 0) { return invokers.get(i); } } } // If all invokers have the same weight value or totalWeight=0, return evenly. return invokers.get(random.nextInt(length)); } }
1.计算总共的权重totalWeight;
2.如果权重不同,则使用随机函数确认在总权重中的偏移值offset,得到调用的机器;
3.如果权重相同,则直接调用随机函数确认机器。
2.RoundRobin LoadBalance(权重轮循均衡算法)
public class RoundRobinLoadBalance extends AbstractLoadBalance { public static final String NAME = "roundrobin"; private final ConcurrentMap<String, AtomicPositiveInteger> sequences = new ConcurrentHashMap<String, AtomicPositiveInteger>(); protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) { String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName(); int length = invokers.size(); // Number of invokers int maxWeight = 0; // The maximum weight int minWeight = Integer.MAX_VALUE; // The minimum weight final LinkedHashMap<Invoker<T>, IntegerWrapper> invokerToWeightMap = new LinkedHashMap<Invoker<T>, IntegerWrapper>(); int weightSum = 0; for (int i = 0; i < length; i++) { int weight = getWeight(invokers.get(i), invocation); maxWeight = Math.max(maxWeight, weight); // Choose the maximum weight minWeight = Math.min(minWeight, weight); // Choose the minimum weight if (weight > 0) { invokerToWeightMap.put(invokers.get(i), new IntegerWrapper(weight)); weightSum += weight; } } AtomicPositiveInteger sequence = sequences.get(key); if (sequence == null) { sequences.putIfAbsent(key, new AtomicPositiveInteger()); sequence = sequences.get(key); } int currentSequence = sequence.getAndIncrement(); if (maxWeight > 0 && minWeight < maxWeight) { int mod = currentSequence % weightSum; for (int i = 0; i < maxWeight; i++) { for (Map.Entry<Invoker<T>, IntegerWrapper> each : invokerToWeightMap.entrySet()) { final Invoker<T> k = each.getKey(); final IntegerWrapper v = each.getValue(); if (mod == 0 && v.getValue() > 0) { return k; } if (v.getValue() > 0) { v.decrement(); mod--; } } } } // Round robin return invokers.get(currentSequence % length); } private static final class IntegerWrapper { private int value; public IntegerWrapper(int value) { this.value = value; } public int getValue() { return value; } public void setValue(int value) { this.value = value; } public void decrement() { this.value--; } } }
3.LeastAction LoadBalance(最少活跃调用数均衡算法)
4.ConsistentHash LoadBalance(一致性Hash均衡算法)
最少活跃数