kNN算法
算法优缺点:
- 优点:精度高、对异常值不敏感、无输入数据假定
- 缺点:时间复杂度和空间复杂度都很高
- 适用数据范围:数值型和标称型
算法的思路:
KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类。
函数解析:
库函数
tile()
如
tile(A,n)
就是将A重复n次
a = np.array([0, 1, 2])
np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],[0, 1, 2, 0, 1, 2]])
np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],[[0, 1, 2, 0, 1, 2]]])
b = np.array([[1, 2], [3, 4]])
np.tile(b, 2)
array([[1, 2, 1, 2],[3, 4, 3, 4]])
np.tile(b, (2, 1))
array([[1, 2],[3, 4],[1, 2],[3, 4]])`
自己实现的函数
createDataSet()
生成测试数组kNNclassify(inputX, dataSet, labels, k)
分类函数
- inputX 输入的参数
- dataSet 训练集
- labels 训练集的标号
- k 最近邻的数目
-
1 #coding=utf-8 2 from numpy import * 3 import operator 4 5 def createDataSet(): 6 group = array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2], [0.0, 0.1]]) 7 labels = ['A','A','B','B'] 8 return group,labels 9 #inputX表示输入向量(也就是我们要判断它属于哪一类的) 10 #dataSet表示训练样本 11 #label表示训练样本的标签 12 #k是最近邻的参数,选最近k个 13 def kNNclassify(inputX, dataSet, labels, k): 14 dataSetSize = dataSet.shape[0]#计算有几个训练数据 15 #开始计算欧几里得距离 16 diffMat = tile(inputX, (dataSetSize,1)) - dataSet 17 18 sqDiffMat = diffMat ** 2 19 sqDistances = sqDiffMat.sum(axis=1)#矩阵每一行向量相加 20 distances = sqDistances ** 0.5 21 #欧几里得距离计算完毕 22 sortedDistance = distances.argsort() 23 classCount = {} 24 for i in xrange(k): 25 voteLabel = labels[sortedDistance[i]] 26 classCount[voteLabel] = classCount.get(voteLabel,0) + 1 27 res = max(classCount) 28 return res 29 30 def main(): 31 group,labels = createDataSet() 32 t = kNNclassify([0,0],group,labels,3) 33 print t 34 35 if __name__=='__main__': 36 main() 37
-
kNN应用实例
手写识别系统的实现
数据集:
两个数据集:training和test。分类的标号在文件名中。像素32*32的。数据大概这个样子:
方法:
kNN的使用,不过这个距离算起来比较复杂(1024个特征),主要是要处理如何读取数据这个问题的,比较方面直接调用就可以了。
速度:
速度还是比较慢的,这里数据集是:training 2000+,test 900+(i5的CPU)
k=3的时候要32s+
-
1 #coding=utf-8 2 from numpy import * 3 import operator 4 import os 5 import time 6 7 def createDataSet(): 8 group = array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2], [0.0, 0.1]]) 9 labels = ['A','A','B','B'] 10 return group,labels 11 #inputX表示输入向量(也就是我们要判断它属于哪一类的) 12 #dataSet表示训练样本 13 #label表示训练样本的标签 14 #k是最近邻的参数,选最近k个 15 def kNNclassify(inputX, dataSet, labels, k): 16 dataSetSize = dataSet.shape[0]#计算有几个训练数据 17 #开始计算欧几里得距离 18 diffMat = tile(inputX, (dataSetSize,1)) - dataSet 19 #diffMat = inputX.repeat(dataSetSize, aixs=1) - dataSet 20 sqDiffMat = diffMat ** 2 21 sqDistances = sqDiffMat.sum(axis=1)#矩阵每一行向量相加 22 distances = sqDistances ** 0.5 23 #欧几里得距离计算完毕 24 sortedDistance = distances.argsort() 25 classCount = {} 26 for i in xrange(k): 27 voteLabel = labels[sortedDistance[i]] 28 classCount[voteLabel] = classCount.get(voteLabel,0) + 1 29 res = max(classCount) 30 return res 31 32 def img2vec(filename): 33 returnVec = zeros((1,1024)) 34 fr = open(filename) 35 for i in range(32): 36 lineStr = fr.readline() 37 for j in range(32): 38 returnVec[0,32*i+j] = int(lineStr[j]) 39 return returnVec 40 41 def handwritingClassTest(trainingFloder,testFloder,K): 42 hwLabels = [] 43 trainingFileList = os.listdir(trainingFloder) 44 m = len(trainingFileList) 45 trainingMat = zeros((m,1024)) 46 for i in range(m): 47 fileName = trainingFileList[i] 48 fileStr = fileName.split('.')[0] 49 classNumStr = int(fileStr.split('_')[0]) 50 hwLabels.append(classNumStr) 51 trainingMat[i,:] = img2vec(trainingFloder+'/'+fileName) 52 testFileList = os.listdir(testFloder) 53 errorCount = 0.0 54 mTest = len(testFileList) 55 for i in range(mTest): 56 fileName = testFileList[i] 57 fileStr = fileName.split('.')[0] 58 classNumStr = int(fileStr.split('_')[0]) 59 vectorUnderTest = img2vec(testFloder+'/'+fileName) 60 classifierResult = kNNclassify(vectorUnderTest, trainingMat, hwLabels, K) 61 #print classifierResult,' ',classNumStr 62 if classifierResult != classNumStr: 63 errorCount +=1 64 print 'tatal error ',errorCount 65 print 'error rate',errorCount/mTest 66 67 def main(): 68 t1 = time.clock() 69 handwritingClassTest('trainingDigits','testDigits',3) 70 t2 = time.clock() 71 print 'execute ',t2-t1 72 if __name__=='__main__': 73 main() 74