题解:最大权闭合子图。将正向收益与S连,花费与T连。建立用户到他后继中转站容量为INF的边,保证不会被割。最后正向收益的和减去最小割就是答案。
#include <iostream> #include <cstdio> #include <cmath> #include <algorithm> #include <map> #include <queue> #include <vector> #include <cstring> #include <iomanip> #include <set> #include<ctime> //CLOCKS_PER_SEC #define se second #define fi first #define ll long long #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define Pii pair<int,int> #define Pli pair<ll,int> #define ull unsigned long long #define pb push_back #define fio ios::sync_with_stdio(false);cin.tie(0) const double Pi=3.14159265; const int N=4e6+10; const ull base=163; const int INF=0x3f3f3f3f; using namespace std; int head[100000],to[N],tot=0,nx[N],cap[N]; int s,t; inline int read(){ int x=0;char ch=getchar(); while (ch<'0'||ch>'9') ch=getchar(); while (ch<='9'&&ch>='0'){x=x*10+ch-'0';ch=getchar();} return x; } void add(int u,int v,int c){ to[tot]=v; nx[tot]=head[u]; cap[tot]=c; head[u]=tot++; to[tot]=u; nx[tot]=head[v]; cap[tot]=0; head[v]=tot++; } int d[100000]; int cur[100000]; int bfs(){ memset(d,-1,sizeof(d)); queue<int>q; q.push(s); d[s]=1; while(!q.empty()){ int u=q.front();q.pop(); for(int i=head[u];~i;i=nx[i]){ int v=to[i]; if(d[v]==-1&&cap[i]>0){ d[v]=d[u]+1; q.push(v); } } } return d[t]!=-1; } int dfs(int s,int a){ if(s==t||a==0)return a; int flow=0,f; for(int &i=cur[s];~i;i=nx[i]){ int v=to[i]; if(d[s]+1==d[v] && cap[i]>0 && (f=dfs(v,min(a,cap[i])))>0){ flow+=f; cap[i]-=f; cap[i^1]+=f; a-=f; if(a==0)break; } } return flow; } int dinic(){ int ans=0; while(bfs()){ for(int i=0;i<=t;i++)cur[i]=head[i]; while(int di=dfs(s,INF)){ ans+=di; } } return ans; } int p[N]; int main(){ int n,m; n=read(),m=read(); memset(head,-1,sizeof(head)); s=0,t=60000; for(int i=1;i<=n;i++){ p[i]=read(); add(i,t,p[i]); } int o=n+1; int sum=0; while(m--){ int l,r,c; l=read(),r=read(),c=read(); sum+=c; add(s,o,c); add(o,l,INF); add(o,r,INF); o++; } cout<<sum-dinic(); return 0; }