论文在此:VERY DEEP CONVOLUTIONA NETWORK FO LARGE-SCAL IMAG RECOGNITION
下载地址:https://arxiv.org/pdf/1409.1556.pdf
网络结构图:
Pytorch代码实现:
import torch.nn as nn
import math
class VGG(nn.Module):
def __init__(self, features, num_classes=1000, init_weights=True):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, 0.01)
m.bias.data.zero_()
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg11(**kwargs):
model = VGG(make_layers(cfg['A']), **kwargs)
return model
def vgg11_bn(**kwargs):
model = VGG(make_layers(cfg['A'], batch_norm=True), **kwargs)
return model
def vgg13(**kwargs):
model = VGG(make_layers(cfg['B']), **kwargs)
return model
def vgg13_bn(**kwargs):
model = VGG(make_layers(cfg['B'], batch_norm=True), **kwargs)
return model
def vgg16(**kwargs):
model = VGG(make_layers(cfg['D']), **kwargs)
return model
def vgg16_bn(**kwargs):
model = VGG(make_layers(cfg['D'], batch_norm=True), **kwargs)
return model
def vgg19(**kwargs):
model = VGG(make_layers(cfg['E']), **kwargs)
return model
def vgg19_bn(**kwargs):
model = VGG(make_layers(cfg['E'], batch_norm=True), **kwargs)
return model
if __name__ == '__main__':
# 'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19_bn', 'vgg19'
# Example
net11 = vgg11()
print(net11)